IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp991-1014.html
   My bibliography  Save this article

Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method

Author

Listed:
  • Song, Yupeng
  • Basu, Biswajit
  • Zhang, Zili
  • Sørensen, John Dalsgaard
  • Li, Jie
  • Chen, Jianbing

Abstract

Floating offshore wind turbine (FOWT) towers are dynamically sensitive to wind and wave excitations. Since the wave tends to be harsher with the increase of wind speed, FOWT towers are likely to experience the most severe vibration operating at the cut-out wind speed. In the present study, the short-term dynamic reliability of a spar-type FOWT is evaluated based on the probability density evolution method (PDEM). For this purpose, an integrated coupled dynamics model for the FOWT is firstly established by incorporating the multibody dynamics with the finite element (FE) method. Next, the conditional joint probability distribution of the significant wave height and peak spectral wave period at the cut-out wind speed is constructed based on the copula model. Then, the stochastic dynamic response and reliability of the FOWT can be analyzed via PDEM. The numerical example of reliability analysis of a 5-MW spar-type FOWT operating at the cut-out wind speed is carried out, in which the long-term met-ocean data at a South China Sea site is utilized. Simulation results show that the reliability of the FOWT for normal operation is less than 0.2 when the acceleration at the tower top is adopted as the failure criterion.

Suggested Citation

  • Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:991-1014
    DOI: 10.1016/j.renene.2020.12.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dong Hyawn & Lee, Sang Geun, 2015. "Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads," Renewable Energy, Elsevier, vol. 79(C), pages 161-166.
    2. Li, Xuan & Zhang, Wei, 2020. "Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures," Renewable Energy, Elsevier, vol. 147(P1), pages 764-775.
    3. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    4. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    5. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    6. Chen, Jianbing & Song, Yupeng & Peng, Yongbo & Nielsen, Søren R.K. & Zhang, Zili, 2020. "An efficient rotational sampling method of wind fields for wind turbine blade fatigue analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2170-2187.
    7. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    8. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yupeng & Sun, Tao & Zhang, Zili, 2023. "Fatigue reliability analysis of floating offshore wind turbines considering the uncertainty due to finite sampling of load conditions," Renewable Energy, Elsevier, vol. 212(C), pages 570-588.
    2. Chen, Jianbing & Liu, Zenghui & Song, Yupeng & Peng, Yongbo & Li, Jie, 2022. "Experimental study on dynamic responses of a spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 560-578.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saha, Kunal, 2018. "An investigation into the dependence structure of major cryptocurrencies," EconStor Preprints 181878, ZBW - Leibniz Information Centre for Economics.
    2. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    3. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    4. Zhou, Rui & Ji, Min, 2021. "Modelling mortality dependence: An application of dynamic vine copula," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 241-255.
    5. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Çekin, Semih Emre & Pradhan, Ashis Kumar & Tiwari, Aviral Kumar & Gupta, Rangan, 2020. "Measuring co-dependencies of economic policy uncertainty in Latin American countries using vine copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 207-217.
    7. Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
    8. Amjad, Muhammad & Akbar, Muhammad & Ullah, Hamd, 2022. "A copula-based approach for creating an index of micronutrient intakes at household level in Pakistan," Economics & Human Biology, Elsevier, vol. 46(C).
    9. Song, Yupeng & Sun, Tao & Zhang, Zili, 2023. "Fatigue reliability analysis of floating offshore wind turbines considering the uncertainty due to finite sampling of load conditions," Renewable Energy, Elsevier, vol. 212(C), pages 570-588.
    10. Vahidin Jeleskovic & Claudio Latini & Zahid I. Younas & Mamdouh A. S. Al-Faryan, 2023. "Optimization of portfolios with cryptocurrencies: Markowitz and GARCH-Copula model approach," Papers 2401.00507, arXiv.org.
    11. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    12. Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
    13. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    14. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    15. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Mejdoub, Hanène & Ben Arab, Mounira, 2018. "Impact of dependence modeling of non-life insurance risks on capital requirement: D-Vine Copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 208-218.
    17. Li, Xuan & Zhang, Wei, 2020. "Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures," Renewable Energy, Elsevier, vol. 147(P1), pages 764-775.
    18. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    19. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    20. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:991-1014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.