IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp1189-1206.html
   My bibliography  Save this article

Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator

Author

Listed:
  • Maduabuchi, Chika C.
  • Ejenakevwe, Kevwe A.
  • Mgbemene, Chigbo A.

Abstract

In this paper, a model based on the first and second laws of thermodynamics is developed in MATLAB R2020a Simulink software and is utilized in thermodynamically optimizing a bismuth telluride based solar thermoelectric generator (STEG) while estimating all system irreversibilities. This study aims at presenting a cheaper and simpler method of optimizing the performance of traditional STEGs without using segmentation or cascading. This is achieved by studying the effects of operating thermal and electric parameters such as load-resistance ratio (LRR), optical concentration ratio (OCR), thermal concentration ratio (TCR), hot junction temperature (Th), cold junction temperature, current and voltage on STEG power output, energy and exergy efficiencies, respectively. The results obtained are validated with experimental and numerical data from previous studies. Results indicate that for an OCR of 30, a STEG exergy efficiency of about 6.5% is obtained from a conventional bismuth-telluride single-stage module. Also, a means of maximising STEG performance while reducing system irreversibilities to the barest minimum is presented. The results obtained herein will provide useful information in the maximisation of conventional and complex STEG systems employing segmentation or cascading.

Suggested Citation

  • Maduabuchi, Chika C. & Ejenakevwe, Kevwe A. & Mgbemene, Chigbo A., 2021. "Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator," Renewable Energy, Elsevier, vol. 168(C), pages 1189-1206.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1189-1206
    DOI: 10.1016/j.renene.2020.12.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812032070X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rowe, D.M., 1999. "Thermoelectrics, an environmentally-friendly source of electrical power," Renewable Energy, Elsevier, vol. 16(1), pages 1251-1256.
    2. Kossyvakis, D.N. & Vossou, C.G. & Provatidis, C.G. & Hristoforou, E.V., 2015. "Computational analysis and performance optimization of a solar thermoelectric generator," Renewable Energy, Elsevier, vol. 81(C), pages 150-161.
    3. Chen, Wei-Hsin & Wang, Chien-Chang & Hung, Chen-I. & Yang, Chang-Chung & Juang, Rei-Cheng, 2014. "Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator," Energy, Elsevier, vol. 64(C), pages 287-297.
    4. Pereira, A. & Caroff, T. & Lorin, G. & Baffie, T. & Romanjek, K. & Vesin, S. & Kusiaku, K. & Duchemin, H. & Salvador, V. & Miloud-Ali, N. & Aixala, L. & Simon, J., 2015. "High temperature solar thermoelectric generator – Indoor characterization method and modeling," Energy, Elsevier, vol. 84(C), pages 485-492.
    5. Al-Nimr, Moh’d A. & Tashtoush, Bourhan M. & Khasawneh, Mohammad A. & Al-Keyyam, Ibrahim, 2017. "A hybrid concentrated solar thermal collector/thermo-electric generation system," Energy, Elsevier, vol. 134(C), pages 1001-1012.
    6. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    7. Xiao, Jinsheng & Yang, Tianqi & Li, Peng & Zhai, Pengcheng & Zhang, Qingjie, 2012. "Thermal design and management for performance optimization of solar thermoelectric generator," Applied Energy, Elsevier, vol. 93(C), pages 33-38.
    8. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Zijie & Zhang, Kai & Jiang, Kaiyu & Li, Haoran & Ye, Peiliang & Yang, Haibin & Mahian, Omid, 2023. "Maximizing energy generation: A study of radiative cooling-based thermoelectric power devices," Energy, Elsevier, vol. 274(C).
    2. Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
    3. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).
    4. Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2017. "Proposal and assessment of a solar thermoelectric generation system characterized by Fresnel lens, cavity receiver and heat pipe," Energy, Elsevier, vol. 141(C), pages 215-238.
    2. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    3. Jo, Hyeonmin & Joo, Younghwan & Kim, Duckjong, 2023. "Thermal design of solar thermoelectric generator with phase change material for timely and efficient power generation," Energy, Elsevier, vol. 263(PA).
    4. Mahmoudinezhad, S. & Cotfas, P.A. & Cotfas, D.T. & Rosendahl, L.A. & Rezania, A., 2020. "Response of thermoelectric generators to Bi2Te3 and Zn4Sb3 energy harvester materials under variant solar radiation," Renewable Energy, Elsevier, vol. 146(C), pages 2488-2498.
    5. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    6. Kossyvakis, D.N. & Vossou, C.G. & Provatidis, C.G. & Hristoforou, E.V., 2015. "Computational and experimental analysis of a commercially available Seebeck module," Renewable Energy, Elsevier, vol. 74(C), pages 1-10.
    7. Mahmoudinezhad, S. & Rezania, A. & Cotfas, P.A. & Cotfas, D.T. & Rosendahl, L.A., 2019. "Transient behavior of concentrated solar oxide thermoelectric generator," Energy, Elsevier, vol. 168(C), pages 823-832.
    8. Kossyvakis, D.N. & Vossou, C.G. & Provatidis, C.G. & Hristoforou, E.V., 2015. "Computational analysis and performance optimization of a solar thermoelectric generator," Renewable Energy, Elsevier, vol. 81(C), pages 150-161.
    9. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    10. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    11. Hazama, Hirofumi & Masuoka, Yumi & Suzumura, Akitoshi & Matsubara, Masato & Tajima, Shin & Asahi, Ryoji, 2018. "Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency," Applied Energy, Elsevier, vol. 226(C), pages 381-388.
    12. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    13. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    14. Sajjad Mahmoudinezhad & Petru Adrian Cotfas & Daniel Tudor Cotfas & Enok Johannes Haahr Skjølstrup & Kjeld Pedersen & Lasse Rosendahl & Alireza Rezania, 2021. "An Experimental Study on Transient Response of a Hybrid Thermoelectric–Photovoltaic System with Beam Splitter," Energies, MDPI, vol. 14(23), pages 1-12, December.
    15. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    16. Madan, Deepa & Wang, Zuoqian & Wright, Paul K. & Evans, James W., 2015. "Printed flexible thermoelectric generators for use on low levels of waste heat," Applied Energy, Elsevier, vol. 156(C), pages 587-592.
    17. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    18. Li, Guiqiang & Shittu, Samson & Ma, Xiaoli & Zhao, Xudong, 2019. "Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric," Energy, Elsevier, vol. 171(C), pages 599-610.
    19. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    20. Sun, Zeyu & Luo, Ding & Wang, Ruochen & Li, Ying & Yan, Yuying & Cheng, Ziming & Chen, Jie, 2022. "Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1189-1206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.