IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp381-388.html
   My bibliography  Save this article

Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency

Author

Listed:
  • Hazama, Hirofumi
  • Masuoka, Yumi
  • Suzumura, Akitoshi
  • Matsubara, Masato
  • Tajima, Shin
  • Asahi, Ryoji

Abstract

Thermoelectric generator (TEG) with water heating system, which utilizes solar energy with a high total energy conversion efficiency, is promising environmental technology for eco-housing and factories to reduce their carbon footprints. In this study, a newly developed cylindrical TEG consisting of ring-disk thermoelectric material is proposed showing that the total energy conversion efficiency is higher than that of a conventional pillar-type TEG. The cylindrical TEG is implemented using high-performance CoSb3-based filled skutterudite thermoelectric materials and a unique 45Ni-55Fe electrode as the hot-side junction. The solar TEG performance is demonstrated under the real sunlight, which is concentrated by a Fresnel lens. The maximum thermoelectric efficiency of the presented solar TEG is 1.8%, with a water heating efficiency of 59% when the temperature difference across the TEG is 428 °C. Further improvement should be achieved by lowering the internal resistance of the TEG and increasing the average dimensionless figure of merit of the thermoelectric materials.

Suggested Citation

  • Hazama, Hirofumi & Masuoka, Yumi & Suzumura, Akitoshi & Matsubara, Masato & Tajima, Shin & Asahi, Ryoji, 2018. "Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency," Applied Energy, Elsevier, vol. 226(C), pages 381-388.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:381-388
    DOI: 10.1016/j.apenergy.2018.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erturun, Ugur & Erermis, Kaan & Mossi, Karla, 2015. "Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices," Applied Energy, Elsevier, vol. 159(C), pages 19-27.
    2. Pereira, A. & Caroff, T. & Lorin, G. & Baffie, T. & Romanjek, K. & Vesin, S. & Kusiaku, K. & Duchemin, H. & Salvador, V. & Miloud-Ali, N. & Aixala, L. & Simon, J., 2015. "High temperature solar thermoelectric generator – Indoor characterization method and modeling," Energy, Elsevier, vol. 84(C), pages 485-492.
    3. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    4. Xiao, Jinsheng & Yang, Tianqi & Li, Peng & Zhai, Pengcheng & Zhang, Qingjie, 2012. "Thermal design and management for performance optimization of solar thermoelectric generator," Applied Energy, Elsevier, vol. 93(C), pages 33-38.
    5. Zhang, Ming & Miao, Lei & Kang, Yi Pu & Tanemura, Sakae & Fisher, Craig A.J. & Xu, Gang & Li, Chun Xin & Fan, Guang Zhu, 2013. "Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules," Applied Energy, Elsevier, vol. 109(C), pages 51-59.
    6. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    2. Jo, Hyeonmin & Joo, Younghwan & Kim, Duckjong, 2023. "Thermal design of solar thermoelectric generator with phase change material for timely and efficient power generation," Energy, Elsevier, vol. 263(PA).
    3. Wang, Guangyao & Ha, Dong Sam & Wang, Kevin G., 2019. "A scalable environmental thermal energy harvester based on solid/liquid phase-change materials," Applied Energy, Elsevier, vol. 250(C), pages 1468-1480.
    4. Chen, Wei-Hsin & Carrera Uribe, Manuel & Kwon, Eilhann E. & Lin, Kun-Yi Andrew & Park, Young-Kwon & Ding, Lu & Saw, Lip Huat, 2022. "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
    6. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    2. Mahmoudinezhad, S. & Rezania, A. & Cotfas, P.A. & Cotfas, D.T. & Rosendahl, L.A., 2019. "Transient behavior of concentrated solar oxide thermoelectric generator," Energy, Elsevier, vol. 168(C), pages 823-832.
    3. Ali, Haider & Yilbas, Bekir Sami & Al-Sharafi, Abdullah, 2017. "Innovative design of a thermoelectric generator with extended and segmented pin configurations," Applied Energy, Elsevier, vol. 187(C), pages 367-379.
    4. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    5. Maduabuchi, Chika C. & Ejenakevwe, Kevwe A. & Mgbemene, Chigbo A., 2021. "Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator," Renewable Energy, Elsevier, vol. 168(C), pages 1189-1206.
    6. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    7. Sajjad Mahmoudinezhad & Petru Adrian Cotfas & Daniel Tudor Cotfas & Enok Johannes Haahr Skjølstrup & Kjeld Pedersen & Lasse Rosendahl & Alireza Rezania, 2021. "An Experimental Study on Transient Response of a Hybrid Thermoelectric–Photovoltaic System with Beam Splitter," Energies, MDPI, vol. 14(23), pages 1-12, December.
    8. Ming, T. & Wu, Y. & Peng, C. & Tao, Y., 2015. "Thermal analysis on a segmented thermoelectric generator," Energy, Elsevier, vol. 80(C), pages 388-399.
    9. Jo, Hyeonmin & Joo, Younghwan & Kim, Duckjong, 2023. "Thermal design of solar thermoelectric generator with phase change material for timely and efficient power generation," Energy, Elsevier, vol. 263(PA).
    10. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    11. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    12. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2017. "Proposal and assessment of a solar thermoelectric generation system characterized by Fresnel lens, cavity receiver and heat pipe," Energy, Elsevier, vol. 141(C), pages 215-238.
    13. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    14. Jia, Xiaodong & Guo, Qiuting, 2020. "Design study of Bismuth-Telluride-based thermoelectric generators based on thermoelectric and mechanical performance," Energy, Elsevier, vol. 190(C).
    15. Olle Högblom & Ronnie Andersson, 2020. "Multiphysics CFD Simulation for Design and Analysis of Thermoelectric Power Generation," Energies, MDPI, vol. 13(17), pages 1-15, August.
    16. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    17. Lorenzi, Bruno & Mariani, Paolo & Reale, Andrea & Di Carlo, Aldo & Chen, Gang & Narducci, Dario, 2021. "Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells," Applied Energy, Elsevier, vol. 300(C).
    18. Kossyvakis, D.N. & Vossou, C.G. & Provatidis, C.G. & Hristoforou, E.V., 2015. "Computational and experimental analysis of a commercially available Seebeck module," Renewable Energy, Elsevier, vol. 74(C), pages 1-10.
    19. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    20. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:381-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.