IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp368-374.html
   My bibliography  Save this article

Methylic and ethylic biodiesel production from crambe oil (Crambe abyssinica): New aspects for yield and oxidative stability

Author

Listed:
  • Gomes Souza, Mateus Cristian
  • Firmino de Oliveira, Marcelo
  • Vieira, Andressa Tironi
  • Marcio de Faria, Anízio
  • Ferreira Batista, Antônio Carlos

Abstract

Biodiesel is a fuel comprised of mono-alkyl esters of long-chain fatty acids derived from vegetable oils or animal fats. Biodiesel is designated B100 and is regarded as the major substitute for fossil diesel. Crambe abyssinica, a native plant from Ethiopia, has great potential for biodiesel production due to its higher calorific value and oxidative stability as compared to soybean oil biodiesel. Compared to fossil diesel, C. abyssinica oil biodiesel emits significantly less CO2 without efficiency loss. However, its crude oil only provides good results if it undergoes supercritical transesterification. Here, we aimed to produce ethyl and methyl esters from crambe oil under ambient conditions. Initially, we tested two methods to degum crambe oil: aqueous degumming and acid degumming. We subjected the degummed oil to transesterification through the methylic or the ethylic route, catalyzed by KOH. The methyl esters of the biodiesel obtained by esterification of crambe oil submitted to acid degumming had higher oxidative stability as compared to the methyl esters of the biodiesel obtained from crambe oil subjected to aqueous degumming: 15.7 h and 10.7 h, respectively, but the yield was lower: 70% vs. 80%, respectively. The ethyl esters of the biodiesel obtained from crambe oil submitted to aqueous degumming provided the highest yield and oxidative stability: 65% and 8.5 h, respectively. We also evaluated the oxidative stability of blends consisting of crambe oil methylic or ethylic biodiesel and soybean oil biodiesel.

Suggested Citation

  • Gomes Souza, Mateus Cristian & Firmino de Oliveira, Marcelo & Vieira, Andressa Tironi & Marcio de Faria, Anízio & Ferreira Batista, Antônio Carlos, 2021. "Methylic and ethylic biodiesel production from crambe oil (Crambe abyssinica): New aspects for yield and oxidative stability," Renewable Energy, Elsevier, vol. 163(C), pages 368-374.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:368-374
    DOI: 10.1016/j.renene.2020.08.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Emanuel & Almeida, Manuel Fonseca & Alvim-Ferraz, Maria da Conceição & Dias, Joana Maia, 2018. "Effect of Crambe abyssinica oil degumming in phosphorus concentration of refined oil and derived biodiesel," Renewable Energy, Elsevier, vol. 124(C), pages 27-33.
    2. Jain, Siddharth & Sharma, M.P., 2010. "Stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 667-678, February.
    3. Diana da Silva Araújo, Francisca & Araújo, Iranildo C. & Costa, Isabella Cristhina G. & Rodarte de Moura, Carla Verônica & Chaves, Mariana H. & Araújo, Eugênio Celso E., 2014. "Study of degumming process and evaluation of oxidative stability of methyl and ethyl biodiesel of Jatropha curcas L. oil from three different Brazilian states," Renewable Energy, Elsevier, vol. 71(C), pages 495-501.
    4. Rosa, Helton Aparecido & Wazilewski, Willian Tenfen & Secco, Deonir & Chaves, Luiz Inácio & Veloso, Gustavo & de Souza, Samuel Nelson Melegari & da Silva, Marcelo José & Santos, Reginaldo Ferreira, 2014. "Biodiesel produced from crambe oil in Brazil—A study of performance and emissions in a diesel cycle engine generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 651-655.
    5. Borges, Karen Araújo & Squissato, André Luiz & Santos, Douglas Queiroz & Neto, Waldomiro Borges & Batista, Antônio Carlos Ferreira & Silva, Tiago Almeida & Vieira, Andressa Tironi & de Oliveira, Marce, 2014. "Homogeneous catalysis of soybean oil transesterification via methylic and ethylic routes: Multivariate comparison," Energy, Elsevier, vol. 67(C), pages 569-574.
    6. Bassegio, Doglas & Zanotto, Maurício Dutra & Santos, Reginaldo Ferreira & Werncke, Ivan & Dias, Patrícia Pereira & Olivo, Mateus, 2016. "Oilseed crop crambe as a source of renewable energy in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 311-321.
    7. Paulillo, Luiz Fernando & Vian, Carlos Eduardo de Freitas & Shikida, Pery Francisco Assis & Mello, Fabiana Tanoue de, 2007. "Álcool combustível e biodiesel no Brasil: quo vadis?," Brazilian Journal of Rural Economy and Sociology (Revista de Economia e Sociologia Rural-RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 45(3), pages 1-35, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Sandeep & Singhal, Mukesh Kumar & Sharma, Mahendra P., 2023. "Analysis of oil mixing for improvement of biodiesel quality with the application of mixture design method," Renewable Energy, Elsevier, vol. 202(C), pages 809-821.
    2. Mamdouh T. Ghannam & Mohamed Y. E. Selim, 2021. "Rheological Properties of the Jojoba Biofuel," Sustainability, MDPI, vol. 13(11), pages 1-12, May.
    3. Maryam Tanveer Akhtar & Mushtaq Ahmad & Maliha Asma & Mamoona Munir & Muhammad Zafar & Shazia Sultana & M. A. Mujtaba & Abdullah Mohamed & Md Abul Kalam, 2022. "Efficient Production of Wild and Non-Edible Brassica juncea (L.) Czern. Seed Oil into High-Quality Biodiesel via Novel, Green and Recyclable NiSO 4 Nano-Catalyst," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    4. Maryam Tanveer Akhtar & Mushtaq Ahmad & Mohamed Fawzy Ramadan & Trobjon Makhkamov & Akramjon Yuldashev & Oybek Mamarakhimov & Mamoona Munir & Maliha Asma & Muhammad Zafar & Salman Majeed, 2023. "Sustainable Production of Biodiesel from Novel Non-Edible Oil Seeds ( Descurainia sophia L.) via Green Nano CeO 2 Catalyst," Energies, MDPI, vol. 16(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    2. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    3. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Cruz, Fernanda Paola Butarelli & Johann, Gracielle & de Oliveira, Kamila Cavalcante & Palú, Fernando & da Silva, Edson Antonio & Guirardello, Reginaldo & Curvelo Pereira, Nehemias, 2017. "Crambe grain drying: Evaluation of a linear and double resistance driving force model and energetic performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1-8.
    6. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    7. Jain, Siddharth & Sharma, M.P., 2011. "Thermal stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 438-448, January.
    8. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    9. D´Agosto, Márcio de Almeida & Vieira da Silva, Marcelino Aurélio & de Oliveira, Cíntia Machado & Franca, Luíza Santana & da Costa Marques, Luiz Guilherme & Soares Murta, Aurélio Lamare & de Freitas, M, 2015. "Evaluating the potential of the use of biodiesel for power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 807-817.
    10. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    11. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    12. Correia, I.A.S. & Borsato, D. & Savada, F.Y. & Pauli, E.D. & Mantovani, A.C.G. & Cremasco, H. & Chendynski, L.T., 2020. "Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design," Renewable Energy, Elsevier, vol. 160(C), pages 288-296.
    13. Christina Moulogianni & Thomas Bournaris, 2017. "Biomass Production from Crops Residues: Ranking of Agro-Energy Regions," Energies, MDPI, vol. 10(7), pages 1-12, July.
    14. Choi, Oh Kyung & Park, Jo Yong & Kim, Jae-Kon & Lee, Jae Woo, 2019. "Bench-scale production of sewage sludge derived-biodiesel (SSD-BD) and upgrade of its quality," Renewable Energy, Elsevier, vol. 141(C), pages 914-921.
    15. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Willian Yuki Watanabe de Lima Mera & Ismael de Jesus Matos Viégas & Jessivaldo Rodrigues Galvão & Tiago Kesajiro Moraes Yakuwa & Alasse Oliveira da Silva & Dioclea Almeida Seabra Silva & Ricardo Shi, 2020. "Effects of Liming on the Growth and Nutritional Status of Crambe (Crambe abyssinica Hochst)," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 590-603, June.
    17. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    18. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    19. Bassegio, Doglas & Zanotto, Maurício Dutra & Santos, Reginaldo Ferreira & Werncke, Ivan & Dias, Patrícia Pereira & Olivo, Mateus, 2016. "Oilseed crop crambe as a source of renewable energy in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 311-321.
    20. Yew Heng Teoh & Heoy Geok How & Farooq Sher & Thanh Danh Le & Huu Tho Nguyen & Haseeb Yaqoob, 2021. "Fuel Injection Responses and Particulate Emissions of a CRDI Engine Fueled with Cocos nucifera Biodiesel," Sustainability, MDPI, vol. 13(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:368-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.