IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp903-918.html
   My bibliography  Save this article

Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis

Author

Listed:
  • Nain, Preeti
  • Kumar, Arun

Abstract

The present study addresses the aspect of upcoming stream of photovoltaic waste by investigating the possibility of material release from end-of-life solar modules using an integrated approach of literature review and stakeholders survey. It involved (i) identification of failure events responsible for degradation of photovoltaic modules as per literature review, (ii) evaluation of identified events by a survey of stakeholders of photovoltaic industry and (iii) investigation of solar industry’s stakeholders’ perceptions on events responsible for generation of end-of-life modules, and present management and recycling practices, (iv) fault tree analysis for estimating probability of material release, and (v) calculation of risk priority number for finding severity of failure events responsible for dumping and material leaching from solar modules. An assessment of previous studies on degradation of solar modules indicates that environmental factors, like high UV irradiation, humidity, temperature play significant roles in module degradation. As per survey, more than 90% of manufacturers were involved in crystalline-silicon photovoltaic business. Only 20% manufacturers replied when asked on the aspect of end-of-life modules, showing that the photovoltaic waste is comparatively a new subject and not enough discussion have been devoted to it. Lack of recycling infrastructure, incentives, and environmental awareness significantly influence recycling and recuse practices. On the basis of worst-case scenario, the maximum probability of the material release from dumped solar panels was estimated to be 0.053. As per manufacturer’s opinion, the most critical factors resulting in modules failure are glass breakage and encapsulant degradation. Among various events from manufacturing to end-of-life stage, the module breakage during operation event have highest probability value (i.e., 0.313). Risk priority number analysis suggests that generation of end-of-life photovoltaic and environmental damage resulting to metal leaching as the most significant events. Damage during manufacturing and installation were identified to be the least significant events resulting in degradation. At present, 76% producers do not recycle or reuse photovoltaic waste material, preferably sell them to informal waste recyclers or rag pickers. Findings from the present study highlight the urgency to develop a suitable system for collection and management of end-of-life modules.

Suggested Citation

  • Nain, Preeti & Kumar, Arun, 2020. "Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis," Renewable Energy, Elsevier, vol. 160(C), pages 903-918.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:903-918
    DOI: 10.1016/j.renene.2020.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domínguez, Adriana & Geyer, Roland, 2019. "Photovoltaic waste assessment of major photovoltaic installations in the United States of America," Renewable Energy, Elsevier, vol. 133(C), pages 1188-1200.
    2. Ornella Malandrino & Daniela Sica & Mario Testa & Stefania Supino, 2017. "Policies and Measures for Sustainable Management of Solar Panel End-of-Life in Italy," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    3. Oliveira, Michele Cândida Carvalho de & Diniz Cardoso, Antônia Sonia Alves & Viana, Marcelo Machado & Lins, Vanessa de Freitas Cunha, 2018. "The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2299-2317.
    4. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    5. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    6. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    7. Triki-Lahiani, Asma & Bennani-Ben Abdelghani, Afef & Slama-Belkhodja, Ilhem, 2018. "Fault detection and monitoring systems for photovoltaic installations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2680-2692.
    8. Cyrs, William D. & Avens, Heather J. & Capshaw, Zachary A. & Kingsbury, Robert A. & Sahmel, Jennifer & Tvermoes, Brooke E., 2014. "Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels," Energy Policy, Elsevier, vol. 68(C), pages 524-533.
    9. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    10. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    11. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    12. Hana Kim & Hun Park, 2018. "PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    13. Gxasheka, A.R. & van Dyk, E.E. & Meyer, E.L., 2005. "Evaluation of performance parameters of PV modules deployed outdoors," Renewable Energy, Elsevier, vol. 30(4), pages 611-620.
    14. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    15. Colli, Alessandra, 2015. "Failure mode and effect analysis for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 804-809.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    2. Preeti Nain & Arun Kumar, 2023. "Understanding manufacturers’ and consumers’ perspectives towards end-of-life solar photovoltaic waste management and recycling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2264-2284, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    3. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    5. Kim, Byungil & Kim, Changyoon, 2018. "Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1019-1024.
    6. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    7. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    8. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    9. Abdulwahab A. Q. Hasan & Ammar Ahmed Alkahtani & Seyed Ahmad Shahahmadi & Mohammad Nur E. Alam & Mohammad Aminul Islam & Nowshad Amin, 2021. "Delamination-and Electromigration-Related Failures in Solar Panels—A Review," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    10. Koester, L. & Lindig, S. & Louwen, A. & Astigarraga, A. & Manzolini, G. & Moser, D., 2022. "Review of photovoltaic module degradation, field inspection techniques and techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Liu, Weidong & Jiang, Xiaohua & Li, Shaoshuai & Luo, Ji & Wen, Gen, 2020. "Photovoltaic module regional clustering in mainland China and application based on factors influencing field reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    13. Jain, Suresh & Sharma, Tanya & Gupta, Anil Kumar, 2022. "End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Magdalena Bogacka & Martyna Potempa & Bartłomiej Milewicz & Dariusz Lewandowski & Krzysztof Pikoń & Katarzyna Klejnowska & Piotr Sobik & Edyta Misztal, 2020. "PV Waste Thermal Treatment According to the Circular Economy Concept," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    15. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    16. Wang, Chen & Feng, Kuishuang & Liu, Xi & Wang, Peng & Chen, Wei-Qiang & Li, Jiashuo, 2022. "Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment," Applied Energy, Elsevier, vol. 307(C).
    17. Majewski, Peter & Al-shammari, Weam & Dudley, Michael & Jit, Joytishna & Lee, Sang-Heon & Myoung-Kug, Kim & Sung-Jim, Kim, 2021. "Recycling of solar PV panels- product stewardship and regulatory approaches," Energy Policy, Elsevier, vol. 149(C).
    18. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    19. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Maruthi Prasad, R. & Krishnamoorthy, A., 2018. "Design, construction, testing and performance of split power solar source using mirror photovoltaic glass for electric vehicles," Energy, Elsevier, vol. 145(C), pages 374-387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:903-918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.