IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp150-167.html
   My bibliography  Save this article

Chemical Kinetics Study on Combustion of Ethanol/biodiesel/n-heptane

Author

Listed:
  • Kong, Jun
  • Liu, Hanyu
  • Zheng, Zhaolei

Abstract

Methyl decanoate (MD), methyl-9-decanoate (MD9D), and n-heptane (H) as alternative blends of biodiesel (B) were used to build a detailed chemical kinetic mechanism containing 3,324 components and 11,053 elementary reactions. This condition verifies that the ignition delay time of the detailed mechanism in the experiment conditions is reasonable. MD and MD9D will produce methyl-2-palmitate (MP2D) and finally be dehydrogenated as CH2O. Furthermore, R4 (O + H2O→OH + OH) and R228 (CH2CHO + O2→CH2O + CO + OH) are the key reactions, which will influence the ignition delay and heat release. According to the simulation result, the rate of BH (the volume ratio of the biodiesel/n-heptane mixture is fixed at 20%/80%) in constant volume bomb (Cetane Ignition Delay 510, CID 510) is the highest. However, with the development of ethanol, the rates decreased. The reactors of BHE5 (BHE5 refers to a blend of 5% ethanol and 95% biodiesel/n-heptane) have the highest rate among the ethanol blends. In addition, the reaction rate of the intermediate substance of ketohydroperoxide (KHP) in a modified cooperative fuel research engine (CFR) during combustion decreased with ethanol addition. However, the KHP rate of BHE15 (BHE15 refers to a blend of 15% ethanol and 85% biodiesel/n-heptane) and BHE20 (BHE20 refers to a blend of 20% ethanol and 80% biodiesel/n-heptane) is similar, causing the closed onset of low-temperature heat release. The rate of CH2O and MP2D of BH is the highest over the others in CID 510. The rate of CH2O and MP2D of BHE5 is lower than that of BHE10 (BHE10 refers to a blend of 10% ethanol and 90% biodiesel/n-heptane), BHE15, and BHE20.

Suggested Citation

  • Kong, Jun & Liu, Hanyu & Zheng, Zhaolei, 2020. "Chemical Kinetics Study on Combustion of Ethanol/biodiesel/n-heptane," Renewable Energy, Elsevier, vol. 148(C), pages 150-167.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:150-167
    DOI: 10.1016/j.renene.2019.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arora, Richa & Behera, Shuvashish & Kumar, Sachin, 2015. "Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 699-717.
    2. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    3. Huang, Weijia & Zheng, Danxing & Chen, Xiaohui & Shi, Lin & Dai, Xiaoye & Chen, Youhui & Jing, Xuye, 2020. "Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels," Renewable Energy, Elsevier, vol. 147(P1), pages 2160-2170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    2. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.
    3. Ni, Zi-hao & Li, Fa-she & Wang, Hua, 2023. "Simplification of the combustion mechanism of Jatropha biodiesel surrogate fuel and reaction path analysis," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    2. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    3. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    5. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    6. Li, Xinzhe & Dong, Yufeng & Chang, Lu & Chen, Lifan & Wang, Guan & Zhuang, Yingping & Yan, Xuefeng, 2023. "Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model," Renewable Energy, Elsevier, vol. 205(C), pages 574-582.
    7. Zhou, Suyang & Zhuang, Wennan & Wu, Zhi & Gu, Wei & Zhan, Xin & Liu, Zhong & Cao, Siming, 2020. "Optimized scheduling of multi-region Gas and Power Complementary system considering tiered gas tariff," Energy, Elsevier, vol. 193(C).
    8. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    9. Park, Cheolwoong & Kim, Changgi & Lee, Sangho & Lee, Sunyoup & Lee, Janghee, 2019. "Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases," Energy, Elsevier, vol. 174(C), pages 1-9.
    10. Kim, Heehyang & Kim, Ayeon & Byun, Manhee & Lim, Hankwon, 2021. "Comparative feasibility studies of H2 supply scenarios for methanol as a carbon-neutral H2 carrier at various scales and distances," Renewable Energy, Elsevier, vol. 180(C), pages 552-559.
    11. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Keenan, Rodney J. & Pozza, Greg & Fitzsimons, James A., 2019. "Ecosystem services in environmental policy: Barriers and opportunities for increased adoption," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    14. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    15. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & de Oliveira Júnior, Sérgio Dantas & de Araújo Padilha, Carlos Eduardo & de Sousa Junior, Francisco Caninde & de Macedo, 2018. "Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation," Renewable Energy, Elsevier, vol. 116(PA), pages 299-308.
    16. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    17. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    18. Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).
    19. Liang, Wang & Jiang, Chunhe & Wang, Guangwei & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Xu, Runsheng & Wang, Peng & Ye, Lian & Li, Jinhua & Wang, Chuan, 2022. "Research on the co-combustion characteristics and kinetics of agricultural waste hydrochar and anthracite," Renewable Energy, Elsevier, vol. 194(C), pages 1119-1130.
    20. Sida Qian & Lei Li, 2023. "A Comparison of Well-to-Wheels Energy Use and Emissions of Hydrogen Fuel Cell, Electric, LNG, and Diesel-Powered Logistics Vehicles in China," Energies, MDPI, vol. 16(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:150-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.