IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1728-1738.html
   My bibliography  Save this article

Hydropower energy recovery in irrigation networks: Validation of a methodology for flow prediction and pump as turbine selection

Author

Listed:
  • Crespo Chacón, Miguel
  • Rodríguez Díaz, Juan Antonio
  • García Morillo, Jorge
  • McNabola, Aonghus

Abstract

In recent years, pump-as-turbines (PATs) have been highlighted for their potential benefits as an application of micro-hydropower (MHP) in water distribution networks. However, PATs come with disadvantages of relatively low peak efficiencies, which can be reduced further with large flow fluctuations. MHP and PATs in particular applied in irrigation networks is a relatively new area of research focus for these devices, and one that poses significant opportunities for energy saving as well as significant challenges due to variations in flow rate. This paper discusses the validation of a statistical methodology to estimate the flow and head variability in a network, and to select PATs whose best efficiency point (BEP) returns the lowest payback period. A comparison between the predicted and actual occurrence probabilities for different flow rates was carried out at nine potential points for MHP installation identified within a real network in Southwestern Spain. For the flow occurrence probability, the coefficient of determination (R2) of 0.804. A total of 281.0 MWh were obtained from the flow prediction and PAT selection methodology, in contrast to 230.5 MWh using the actual measured data. An overall difference of 0.2% was obtained when both PATs were simulated under actual conditions.

Suggested Citation

  • Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Hydropower energy recovery in irrigation networks: Validation of a methodology for flow prediction and pump as turbine selection," Renewable Energy, Elsevier, vol. 147(P1), pages 1728-1738.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1728-1738
    DOI: 10.1016/j.renene.2019.09.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    2. Fernández García, I. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P. & Berbel, J., 2014. "Effects of modernization and medium term perspectives on water and energy use in irrigation districts," Agricultural Systems, Elsevier, vol. 131(C), pages 56-63.
    3. Oreste Fecarotta & Costanza Aricò & Armando Carravetta & Riccardo Martino & Helena Ramos, 2015. "Hydropower Potential in Water Distribution Networks: Pressure Control by PATs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 699-714, February.
    4. García Morillo, J. & McNabola, A. & Camacho, E. & Montesinos, P. & Rodríguez Díaz, J.A., 2018. "Hydro-power energy recovery in pressurized irrigation networks: A case study of an Irrigation District in the South of Spain," Agricultural Water Management, Elsevier, vol. 204(C), pages 17-27.
    5. Lydon, Tracey & Coughlan, Paul & McNabola, Aonghus, 2017. "Pressure management and energy recovery in water distribution networks: Development of design and selection methodologies using three pump-as-turbine case studies," Renewable Energy, Elsevier, vol. 114(PB), pages 1038-1050.
    6. Barbarelli, S. & Amelio, M. & Florio, G., 2016. "Predictive model estimating the performances of centrifugal pumps used as turbines," Energy, Elsevier, vol. 107(C), pages 103-121.
    7. Rossi, Mosè & Renzi, Massimiliano, 2018. "A general methodology for performance prediction of pumps-as-turbines using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 128(PA), pages 265-274.
    8. Rodriguez-Diaz, J.A. & Camacho-Poyato, E. & Lopez-Luque, R. & Perez-Urrestarazu, L., 2008. "Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: An application in spain," Agricultural Systems, Elsevier, vol. 96(1-3), pages 250-259, March.
    9. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale," Renewable Energy, Elsevier, vol. 155(C), pages 396-406.
    2. Giacomo Ferrarese & Alessandro Pagano & Umberto Fratino & Stefano Malavasi, 2021. "Improving Operation of Pressurized Irrigation Systems by an Off-grid Control Devices Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2813-2827, July.
    3. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    4. Helena M. Ramos & Jorge G. Morillo & Juan A. Rodríguez Diaz & Armando Carravetta & Aonghus McNabola, 2021. "Sustainable Water-Energy Nexus towards Developing Countries’ Water Sector Efficiency," Energies, MDPI, vol. 14(12), pages 1-18, June.
    5. Itani, Youssef & Soliman, Mohamed Reda & Kahil, Maher, 2020. "Recovering energy by hydro-turbines application in water transmission pipelines: A case study west of Saudi Arabia," Energy, Elsevier, vol. 211(C).
    6. Kucukali, Serhat & Al Bayatı, Omar & Maraş, H. Hakan, 2021. "Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool," Renewable Energy, Elsevier, vol. 172(C), pages 633-650.
    7. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    8. Azimov, Ulugbek & Avezova, Nilufar, 2022. "Sustainable small-scale hydropower solutions in Central Asian countries for local and cross-border energy/water supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    10. Ghaya Alawadhi & Meera Almehiri & Ahmad Sakhrieh & Ahmad Alshwawra & Jamil Al Asfar, 2022. "Cost Analysis of Implementing In-Pipe Hydro Turbine in the United Arab Emirates Water Network," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
    11. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    12. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chacón, Miguel Crespo & Rodríguez Díaz, Juan Antonio & Morillo, Jorge García & McNabola, Aonghus, 2021. "Evaluation of the design and performance of a micro hydropower plant in a pressurised irrigation network: Real world application at farm-level in Southern Spain," Renewable Energy, Elsevier, vol. 169(C), pages 1106-1120.
    2. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    3. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    4. Tahani, Mojtaba & Kandi, Ali & Moghimi, Mahdi & Houreh, Shahram Derakhshan, 2020. "Rotational speed variation assessment of centrifugal pump-as-turbine as an energy utilization device under water distribution network condition," Energy, Elsevier, vol. 213(C).
    5. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    6. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    7. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    8. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale," Renewable Energy, Elsevier, vol. 155(C), pages 396-406.
    9. Telikani, Akbar & Rossi, Mosé & Khajehali, Naghmeh & Renzi, Massimiliano, 2023. "Pumps-as-Turbines’ (PaTs) performance prediction improvement using evolutionary artificial neural networks," Applied Energy, Elsevier, vol. 330(PA).
    10. Rossi, Mosè & Comodi, Gabriele & Piacente, Nicola & Renzi, Massimiliano, 2020. "Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids," Applied Energy, Elsevier, vol. 270(C).
    11. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    12. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    13. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    14. García Morillo, J. & McNabola, A. & Camacho, E. & Montesinos, P. & Rodríguez Díaz, J.A., 2018. "Hydro-power energy recovery in pressurized irrigation networks: A case study of an Irrigation District in the South of Spain," Agricultural Water Management, Elsevier, vol. 204(C), pages 17-27.
    15. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    16. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    17. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    18. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    19. Hamlehdar, Maryam & Yousefi, Hossein & Noorollahi, Younes & Mohammadi, Mohammad, 2022. "Energy recovery from water distribution networks using micro hydropower: A case study in Iran," Energy, Elsevier, vol. 252(C).
    20. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2022. "Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1728-1738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.