IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp811-818.html
   My bibliography  Save this article

Effect of volatile organic compounds on carbon dioxide adsorption performance via pressure swing adsorption for landfill gas upgrading

Author

Listed:
  • Gong, Huijuan
  • Zhou, Shuyu
  • Chen, Zezhi
  • Chen, Lu

Abstract

During the landfill gas (LFG) upgrading process of carbon dioxide (CO2) separation by pressure swing adsorption (PSA), if the non-harmful volatile organic compounds (VOCs) are not removed completely, they would cause a rapid failure of the adsorbents due to irreversible adsorption. This point was not given enough concern previously, and no special procedures were generally adopted for VOC removing in practical LFG upgrading engineering. The aim of this study is to demonstrate the harmfulness of VOCs to the adsorbents in PSA process, thereby, five typical VOCs in LFG, including toluene, ethylbenzene, p-xylene, cyclohexane, and butanone were selected and their effect on CO2 adsorption performances of zeolite 13X, 5A and activated carbon were studied for the first time through different adsorption experiments, i.e. the measurement of CO2 equilibrium adsorption isotherm on the adsorbents with or without VOC-loaded, CO2 adsorption experiment simulating the practical PSA operation, and CO2 diffusion coefficient measurement in the dynamic adsorption process. Results of these adsorption experiments demonstrated that all the VOCs adsorbed on the adsorbents irreversibly and lead to CO2 adsorption performances deteriorating. Therefore, conclusion could be drawn that all the VOCs should be removed sufficiently to keep high efficient operation of PSA for LFG upgrading.

Suggested Citation

  • Gong, Huijuan & Zhou, Shuyu & Chen, Zezhi & Chen, Lu, 2019. "Effect of volatile organic compounds on carbon dioxide adsorption performance via pressure swing adsorption for landfill gas upgrading," Renewable Energy, Elsevier, vol. 135(C), pages 811-818.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:811-818
    DOI: 10.1016/j.renene.2018.12.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    2. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    3. Montanari, Tania & Finocchio, Elisabetta & Salvatore, Enrico & Garuti, Gilberto & Giordano, Andrea & Pistarino, Chiara & Busca, Guido, 2011. "CO2 separation and landfill biogas upgrading: A comparison of 4A and 13X zeolite adsorbents," Energy, Elsevier, vol. 36(1), pages 314-319.
    4. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingde Xie & Xi Guo & Dan Liu, 2022. "Leachate Pretreatment before Pipe Transportation: Reduction of Leachate Clogging Potential and Upgrading of Landfill Gas," IJERPH, MDPI, vol. 19(10), pages 1-13, May.
    2. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miyawaki, B. & Mariano, A.B. & Vargas, J.V.C. & Balmant, W. & Defrancheschi, A.C. & Corrêa, D.O. & Santos, B. & Selesu, N.F.H. & Ordonez, J.C. & Kava, V.M., 2021. "Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment," Renewable Energy, Elsevier, vol. 163(C), pages 1153-1165.
    2. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    4. Cavaignac, Renata S. & Ferreira, Newton L. & Guardani, Roberto, 2021. "Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing," Renewable Energy, Elsevier, vol. 171(C), pages 868-880.
    5. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    7. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    9. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    10. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    11. Zang, Xiaoya & Wan, Lihua & He, Yong & Liang, Deqing, 2020. "CO2 removal from synthesized ternary gas mixtures used hydrate formation with sodium dodecyl sulfate(SDS) as additive," Energy, Elsevier, vol. 190(C).
    12. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    13. Gong, Huijuan & Chen, Zezhi & Yu, Huiqiang & Wu, Weili & Wang, Weixing & Pang, Honglei & Du, Mengfan, 2018. "Methane recovery in a combined amine absorption and gas steam boiler as a self-provided system for biogas upgrading," Energy, Elsevier, vol. 157(C), pages 744-751.
    14. Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
    15. Di Maria, Francesco & Sisani, Federico & Norouzi, Omid & Mersky, Ronald L., 2019. "The effectiveness of anaerobic digestion of bio-waste in replacing primary energies: An EU28 case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 347-354.
    16. Chen, Wei-Hsin & Lin, Shih-Cheng, 2018. "Biogas partial oxidation in a heat recirculation reactor for syngas production and CO2 utilization," Applied Energy, Elsevier, vol. 217(C), pages 113-125.
    17. Kim, Young Jun & Nam, Young Suk & Kang, Yong Tae, 2015. "Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas," Energy, Elsevier, vol. 91(C), pages 732-741.
    18. Papadias, Dionissios D. & Ahmed, Shabbir & Kumar, Romesh, 2012. "Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system," Energy, Elsevier, vol. 44(1), pages 257-277.
    19. Wantz, Eliot & Lemonnier, Mathis & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2023. "Innovative high-pressure water scrubber for biogas upgrading at farm-scale using vacuum for water regeneration," Applied Energy, Elsevier, vol. 350(C).
    20. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:811-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.