IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v217y2018icp113-125.html
   My bibliography  Save this article

Biogas partial oxidation in a heat recirculation reactor for syngas production and CO2 utilization

Author

Listed:
  • Chen, Wei-Hsin
  • Lin, Shih-Cheng

Abstract

Carbon dioxide and methane are two most important gases causing global warming; they are also the most crucial constituents in biogas. To efficiently convert the two greenhouse gases from biogas into synthesis gas (or syngas), the catalytic partial oxidation of methane (CPOM) triggered by a rhodium-based (Rh-based) catalyst in a spiral Swiss-roll reactor is studied. Three different biogases, including landfill, sewage, and farm biogases, are taken into consideration and the O2-to-CH4 (O2/CH4) molar ratio is between 0.6 and 0.7. It suggests that the reactor with heat recovery can substantially enhance the CH4 conversion when compared with that without heat recirculation, and almost all CH4 in the three biogases is converted. On account of certain amount of CO2 contained in the biogases, the role played by dry reforming on CPOM is beyond those played by methane combustion and steam reforming. Within the investigated range of O2/CH4 ratio, the maximum CO2 conversion is 31.12%. The higher the CH4 concentration and the lower the CO2 one in a biogas, the better the H2 and CO selectivity. The highest syngas yield is 2.80 mol/(mol CH4), accounting for around 93% of theoretical result. Overall, the CH4 conversion, H2 yield, and H2/CO ratio in the product gas are higher than other studies, revealing that the excess enthalpy reactor is a promising device to simultaneously achieve syngas production and CO2 utilization from biogas in industry.

Suggested Citation

  • Chen, Wei-Hsin & Lin, Shih-Cheng, 2018. "Biogas partial oxidation in a heat recirculation reactor for syngas production and CO2 utilization," Applied Energy, Elsevier, vol. 217(C), pages 113-125.
  • Handle: RePEc:eee:appene:v:217:y:2018:i:c:p:113-125
    DOI: 10.1016/j.apenergy.2018.02.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191830254X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Lin, Shih-Cheng, 2016. "Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery," Applied Energy, Elsevier, vol. 162(C), pages 1141-1152.
    2. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    3. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    4. Ehimen, E.A. & Sun, Z.F. & Carrington, C.G. & Birch, E.J. & Eaton-Rye, J.J., 2011. "Anaerobic digestion of microalgae residues resulting from the biodiesel production process," Applied Energy, Elsevier, vol. 88(10), pages 3454-3463.
    5. Akobi, Chinaza & Yeo, Hyeongu & Hafez, Hisham & Nakhla, George, 2016. "Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass," Applied Energy, Elsevier, vol. 184(C), pages 548-559.
    6. Chen, Wei-Hsin & Huang, Shih-Rong & Wang, Xiao-Dong & Wu, Po-Hua & Lin, Yu-Li, 2017. "Performance of a thermoelectric generator intensified by temperature oscillation," Energy, Elsevier, vol. 133(C), pages 257-269.
    7. Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
    8. Chen, Wei-Hsin & Lin, Shih-Cheng, 2015. "Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation," Energy, Elsevier, vol. 82(C), pages 206-217.
    9. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    10. Chen, Wei-Hsin & Hsu, Chih-Liang & Wang, Xiao-Dong, 2016. "Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization," Energy, Elsevier, vol. 109(C), pages 326-340.
    11. Moraes, Bruna S. & Petersen, Søren O. & Zaiat, Marcelo & Sommer, Sven G. & Triolo, Jin Mi, 2017. "Reduction in greenhouse gas emissions from vinasse through anaerobic digestion," Applied Energy, Elsevier, vol. 189(C), pages 21-30.
    12. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    13. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yaning & Ke, Cunfeng & Fu, Wenming & Cui, Yunlei & Rehan, Mirza Abdullah & Li, Bingxi, 2020. "Simulation of microwave-assisted gasification of biomass: A review," Renewable Energy, Elsevier, vol. 154(C), pages 488-496.
    2. Chen, Wei-Hsin & Guo, Yu-Zhi & Chen, Chih-Chun, 2018. "Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor," Applied Energy, Elsevier, vol. 232(C), pages 79-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miyawaki, B. & Mariano, A.B. & Vargas, J.V.C. & Balmant, W. & Defrancheschi, A.C. & Corrêa, D.O. & Santos, B. & Selesu, N.F.H. & Ordonez, J.C. & Kava, V.M., 2021. "Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment," Renewable Energy, Elsevier, vol. 163(C), pages 1153-1165.
    2. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    3. Gong, Huijuan & Zhou, Shuyu & Chen, Zezhi & Chen, Lu, 2019. "Effect of volatile organic compounds on carbon dioxide adsorption performance via pressure swing adsorption for landfill gas upgrading," Renewable Energy, Elsevier, vol. 135(C), pages 811-818.
    4. Siang, T.J. & Jalil, A.A. & Abdulrasheed, A.A. & Hambali, H.U. & Nabgan, Walid, 2020. "Thermodynamic equilibrium study of altering methane partial oxidation for Fischer–Tropsch synfuel production," Energy, Elsevier, vol. 198(C).
    5. Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
    6. Gurung, Anup & Van Ginkel, Steven W. & Kang, Woo-Chang & Qambrani, Naveed Ahmed & Oh, Sang-Eun, 2012. "Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study," Energy, Elsevier, vol. 43(1), pages 396-401.
    7. Tijani, Hamzat & Abdullah, Norhayati & Yuzir, Ali, 2015. "Integration of microalgae biomass in biomethanation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1610-1622.
    8. Chen, Wei-Hsin & Guo, Yu-Zhi & Chen, Chih-Chun, 2018. "Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor," Applied Energy, Elsevier, vol. 232(C), pages 79-88.
    9. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    10. Cavaignac, Renata S. & Ferreira, Newton L. & Guardani, Roberto, 2021. "Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing," Renewable Energy, Elsevier, vol. 171(C), pages 868-880.
    11. Wanhe Hu & Jingxin Wang & Jianli Hu & Jamie Schuler & Shawn Grushecky & Changle Jiang & William Smith & Nan Nan & Edward M. Sabolsky, 2024. "Combustion Behaviors, Kinetics, and Thermodynamics of Naturally Decomposed and Torrefied Northern Red Oak ( Quercus rubra ) Forest Logging Residue," Energies, MDPI, vol. 17(7), pages 1-17, March.
    12. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    13. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    14. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    15. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    16. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    17. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    18. Piotr Bórawski & Aneta Bełdycka-Bórawska & Zuzana Kapsdorferová & Tomasz Rokicki & Andrzej Parzonko & Lisa Holden, 2024. "Perspectives of Electricity Production from Biogas in the European Union," Energies, MDPI, vol. 17(5), pages 1-26, March.
    19. Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    20. Foteini Sakaveli & Maria Petala & Vasilios Tsiridis & Efthymios Darakas, 2024. "Enhancing Methane Yield in Anaerobic Co-Digestion of Primary Sewage Sludge: A Comprehensive Review on Potential Additives and Strategies," Waste, MDPI, vol. 2(1), pages 1-29, January.

    More about this item

    Keywords

    Biogas; Catalytic partial oxidation of methane (CPOM); Numerical simulation; CO2 utilization; Syngas and H2 yields; Swiss-roll reactor;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:217:y:2018:i:c:p:113-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.