IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp998-1017.html
   My bibliography  Save this article

Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant

Author

Listed:
  • Li, Xiaolei
  • Xu, Ershu
  • Ma, Linrui
  • Song, Shuang
  • Xu, Li

Abstract

In a parabolic trough solar power plant, the steam generation system is the junction of the heat transfer fluid circuit and the water/steam circuit. Due to the discontinuous nature of solar radiation, the dynamic characteristics of working fluid physical parameters, such as mass flow rate, temperature, and pressure, are more evident in the steam generation system in this kind of plant, increasing the complexity of system operation. In this paper, a zero-dimension dynamic model of an oil/water steam generation system was developed based on the lumped parameter method. Based on the developed model, four typical single-parameter disturbance processes were simulated, and then the control strategy was obtained. System-level simulations on different days (clear and cloudy) and in different seasons (spring, summer, autumn, and winter) were also conducted on a STAR-90 simulation platform using real meteorological data. The simulation results show that PI control can be used to adjust the water level, that system operation on cloudy days should be avoided, and that the system can continue to generate steam after the sun sets. The simulation results can provide a useful reference for plant operators.

Suggested Citation

  • Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:998-1017
    DOI: 10.1016/j.renene.2018.06.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Qiang & Wang, Zhifeng & Xu, Ershu & Li, Xin & Guo, Minghuan, 2012. "Modeling and dynamic simulation of the collector and receiver system of 1MWe DAHAN solar thermal power tower plant," Renewable Energy, Elsevier, vol. 43(C), pages 18-29.
    2. Manenti, Flavio & Ravaghi-Ardebili, Zohreh, 2013. "Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage," Energy, Elsevier, vol. 55(C), pages 89-97.
    3. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    4. Boukelia, T.E. & Mecibah, M.S. & Kumar, B.N. & Reddy, K.S., 2015. "Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt," Energy, Elsevier, vol. 88(C), pages 292-303.
    5. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    6. González-Gómez, P.A. & Gómez-Hernández, J. & Briongos, J.V. & Santana, D., 2018. "Transient thermo-mechanical analysis of steam generators for solar tower plants," Applied Energy, Elsevier, vol. 212(C), pages 1051-1068.
    7. Rovira, Antonio & Barbero, Rubén & Montes, María José & Abbas, Rubén & Varela, Fernando, 2016. "Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems," Applied Energy, Elsevier, vol. 162(C), pages 990-1000.
    8. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    9. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    10. Pizzolato, A. & Donato, F. & Verda, V. & Santarelli, M. & Sciacovelli, A., 2017. "CSP plants with thermocline thermal energy storage and integrated steam generator – Techno-economic modeling and design optimization," Energy, Elsevier, vol. 139(C), pages 231-246.
    11. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    12. Xu, Ershu & Yu, Qiang & Wang, Zhifeng & Yang, Chenyao, 2011. "Modeling and simulation of 1 MW DAHAN solar thermal power tower plant," Renewable Energy, Elsevier, vol. 36(2), pages 848-857.
    13. Nation, Deju D. & Heggs, Peter J. & Dixon-Hardy, Darron W., 2017. "Modelling and simulation of a novel Electrical Energy Storage (EES) Receiver for Solar Parabolic Trough Collector (PTC) power plants," Applied Energy, Elsevier, vol. 195(C), pages 950-973.
    14. Yu, Qiang & Wang, Zhifeng & Xu, Ershu, 2014. "Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field," Applied Energy, Elsevier, vol. 136(C), pages 417-430.
    15. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2017. "Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage," Applied Energy, Elsevier, vol. 190(C), pages 600-611.
    16. Guo, Su & Liu, Deyou & Chen, Xingying & Chu, Yinghao & Xu, Chang & Liu, Qunming & Zhou, Ling, 2017. "Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants," Applied Energy, Elsevier, vol. 202(C), pages 700-714.
    17. Hou, Hongjuan & Wu, Junjie & Yang, Yongping & Hu, Eric & Chen, Si, 2015. "Performance of a solar aided power plant in fuel saving mode," Applied Energy, Elsevier, vol. 160(C), pages 873-881.
    18. Xu, Ershu & Wang, Zhifeng & Wei, Gao & Zhuang, Jiayan, 2012. "Dynamic simulation of thermal energy storage system of Badaling 1 MW solar power tower plant," Renewable Energy, Elsevier, vol. 39(1), pages 455-462.
    19. Zaversky, Fritz & Sánchez, Marcelino & Astrain, David, 2014. "Object-oriented modeling for the transient response simulation of multi-pass shell-and-tube heat exchangers as applied in active indirect thermal energy storage systems for concentrated solar power," Energy, Elsevier, vol. 65(C), pages 647-664.
    20. Zhao, Dongming & Xu, Ershu & Wang, Zhifeng & Yu, Qiang & Xu, Li & Zhu, Lingzhi, 2016. "Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector," Renewable Energy, Elsevier, vol. 94(C), pages 197-212.
    21. González-Gómez, P.A. & Petrakopoulou, F. & Briongos, J.V. & Santana, D., 2017. "Cost-based design optimization of the heat exchangers in a parabolic trough power plant," Energy, Elsevier, vol. 123(C), pages 314-325.
    22. He, Canming & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yuan, Yibo, 2017. "Heat transfer and thermal performance of two-stage molten salt steam generation system," Applied Energy, Elsevier, vol. 204(C), pages 1231-1239.
    23. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    24. Ponce, Carolina V. & Sáez, Doris & Bordons, Carlos & Núñez, Alfredo, 2016. "Dynamic simulator and model predictive control of an integrated solar combined cycle plant," Energy, Elsevier, vol. 109(C), pages 974-986.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    2. Abu Shadate Faisal Mahamude & Muhamad Kamal Kamarulzaman & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Rosli Abu Bakar & Talal Yusaf & Sivarao Subramanion & Belal , 2022. "A Comprehensive Review on Efficiency Enhancement of Solar Collectors Using Hybrid Nanofluids," Energies, MDPI, vol. 15(4), pages 1-26, February.
    3. Han, Yu & Sun, Yingying & Wu, Junjie, 2020. "An efficient solar-aided waste heat recovery system based on steam ejector and WTA pre-drying in solar/lignite hybrid power plants," Energy, Elsevier, vol. 208(C).
    4. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2021. "Dynamic simulation and performance analysis of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Renewable Energy, Elsevier, vol. 179(C), pages 1458-1471.
    5. Zhang, Qiang & Jiang, Kaijun & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2021. "Control strategy of molten salt solar power tower plant function as peak load regulation in grid," Applied Energy, Elsevier, vol. 294(C).
    6. Xiaolei Li & Zhifeng Wang & Ershu Xu & Linrui Ma & Li Xu & Dongming Zhao, 2019. "Dynamically Coupled Operation of Two-Tank Indirect TES and Steam Generation System," Energies, MDPI, vol. 12(9), pages 1-42, May.
    7. Zhang, Qiang & Cao, Donghong & Jiang, Kaijun & Du, Xiaoze & Xu, Ershu, 2020. "Heat transport characteristics of a peak shaving solar power tower station," Renewable Energy, Elsevier, vol. 156(C), pages 493-508.
    8. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
    9. Yao, Lingxiang & Xiao, Xianyong & Wang, Yang & Yao, Xiaoming & Ma, Zhicheng, 2022. "Dynamic modeling and hierarchical control of a concentrated solar power plant with direct molten salt storage," Energy, Elsevier, vol. 252(C).
    10. González-Gómez, P.A. & Laporte-Azcué, M. & Fernández-Torrijos, M. & Santana, D., 2022. "Design optimization and structural assessment of a header and coil steam generator for load-following solar tower plants," Renewable Energy, Elsevier, vol. 192(C), pages 456-471.
    11. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiang & Cao, Donghong & Jiang, Kaijun & Du, Xiaoze & Xu, Ershu, 2020. "Heat transport characteristics of a peak shaving solar power tower station," Renewable Energy, Elsevier, vol. 156(C), pages 493-508.
    2. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    3. Zhang, Qiang & Wang, Zhiming & Du, Xiaoze & Yu, Gang & Wu, Hongwei, 2019. "Dynamic simulation of steam generation system in solar tower power plant," Renewable Energy, Elsevier, vol. 135(C), pages 866-876.
    4. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
    5. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
    6. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    7. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    8. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.
    9. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    10. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    11. Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2019. "Design of header and coil steam generators for concentrating solar power applications accounting for low-cycle fatigue requirements," Applied Energy, Elsevier, vol. 236(C), pages 793-803.
    12. Xiaolei Li & Zhifeng Wang & Ershu Xu & Linrui Ma & Li Xu & Dongming Zhao, 2019. "Dynamically Coupled Operation of Two-Tank Indirect TES and Steam Generation System," Energies, MDPI, vol. 12(9), pages 1-42, May.
    13. Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2020. "A method to account for transient performance requirements in the design of steam generators for concentrated solar power applications," Applied Energy, Elsevier, vol. 269(C).
    14. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    15. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    16. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    18. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.
    19. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    20. Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:998-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.