IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v120y2018icp78-87.html
   My bibliography  Save this article

A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications

Author

Listed:
  • Tappura, Kirsi

Abstract

Thin-film thermoelectric generators with a novel folding scheme are proposed for large-area, low energy-density applications. Both the electrical current and heat transfer are in the plane of the thermoelectric thin-film, yet the heat transfer is across the plane of the module − similar to conventional bulk thermoelectric modules. With such designs, the heat leakage through the module itself can be minimized and the available temperature gradient maximized. Different from the previously reported corrugated thermoelectric generators, the proposed folding scheme enables high packing densities without compromising the thermal contact area to the heat source and sink. The significance of various thermal transport, or leakage, mechanisms in relation to power production is demonstrated for different packing densities and thicknesses of the module under heat sink-limited conditions. It is shown that the power factor is more important than ZT for predicting the power output of such thin-film devices. As very thin thermoelectric films are employed with modest temperature gradients, high aspect-ratio elements are needed to meet the − usually ignored − requirements of practical applications for the current. With the design trade-offs considered, the proposed devices may enable the exploitation of thermoelectric energy harvesting in new − large-area − applications at reasonable cost.

Suggested Citation

  • Tappura, Kirsi, 2018. "A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications," Renewable Energy, Elsevier, vol. 120(C), pages 78-87.
  • Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:78-87
    DOI: 10.1016/j.renene.2017.12.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madan, Deepa & Wang, Zuoqian & Wright, Paul K. & Evans, James W., 2015. "Printed flexible thermoelectric generators for use on low levels of waste heat," Applied Energy, Elsevier, vol. 156(C), pages 587-592.
    2. LeBlanc, Saniya & Yee, Shannon K. & Scullin, Matthew L. & Dames, Chris & Goodson, Kenneth E., 2014. "Material and manufacturing cost considerations for thermoelectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 313-327.
    3. Owoyele, Opeoluwa & Ferguson, Scott & O’Connor, Brendan T., 2015. "Performance analysis of a thermoelectric cooler with a corrugated architecture," Applied Energy, Elsevier, vol. 147(C), pages 184-191.
    4. Zhu, Wei & Deng, Yuan & Gao, Min & Wang, Yao & Cui, Jiaolin & Gao, Hongli, 2015. "Thin-film solar thermoelectric generator with enhanced power output: Integrated optimization design to obtain directional heat flow," Energy, Elsevier, vol. 89(C), pages 106-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei-Hsin & Lin, Yi-Xian & Wang, Xiao-Dong & Lin, Yu-Li, 2019. "A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties," Applied Energy, Elsevier, vol. 241(C), pages 11-24.
    2. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    3. Lin, Lin & Yao, Bing-Qing & Wang, Xiao-Dong & Lee, Duu-Jong, 2022. "Carrier transport model and novel design for micro thermoelectric generator with enhanced performance," Applied Energy, Elsevier, vol. 315(C).
    4. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Pourhedayat, Samira, 2019. "A comprehensive exergy analysis of a prototype Peltier air-cooler; experimental investigation," Renewable Energy, Elsevier, vol. 131(C), pages 308-317.
    5. Tappura, Kirsi & Juntunen, Taneli & Jaakkola, Kaarle & Ruoho, Mikko & Tittonen, Ilkka & Ritasalo, Riina & Pudas, Marko, 2020. "Large-area implementation and critical evaluation of the material and fabrication aspects of a thin-film thermoelectric generator based on aluminum-doped zinc oxide," Renewable Energy, Elsevier, vol. 147(P1), pages 1292-1298.
    6. Karami Rad, Meysam & Rezania, Alireza & Omid, Mahmoud & Rajabipour, Ali & Rosendahl, Lasse, 2019. "Study on material properties effect for maximization of thermoelectric power generation," Renewable Energy, Elsevier, vol. 138(C), pages 236-242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
    2. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    3. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    5. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
    6. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    7. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    8. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    9. Jang, Eunhwa & Banerjee, Priyanshu & Huang, Jiyuan & Madan, Deepa, 2021. "High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials," Applied Energy, Elsevier, vol. 294(C).
    10. Panagiotis Stathopoulos & Javier Fernàndez-Villa, 2018. "On the Potential of Power Generation from Thermoelectric Generators in Gas Turbine Combustors," Energies, MDPI, vol. 11(10), pages 1-21, October.
    11. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
    12. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    13. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    14. Rea, Jonathan E. & Oshman, Christopher J. & Singh, Abhishek & Alleman, Jeff & Parilla, Philip A. & Hardin, Corey L. & Olsen, Michele L. & Siegel, Nathan P. & Ginley, David S. & Toberer, Eric S., 2018. "Experimental demonstration of a dispatchable latent heat storage system with aluminum-silicon as a phase change material," Applied Energy, Elsevier, vol. 230(C), pages 1218-1229.
    15. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & González, J.R. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2018. "A method to assess the fuel economy of automotive thermoelectric generators," Applied Energy, Elsevier, vol. 222(C), pages 42-58.
    16. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    17. Zhe Zhang & Yuqi Zhang & Xiaomei Sui & Wenbin Li & Daochun Xu, 2020. "Performance of Thermoelectric Power-Generation System for Sufficient Recovery and Reuse of Heat Accumulated at Cold Side of TEG with Water-Cooling Energy Exchange Circuit," Energies, MDPI, vol. 13(21), pages 1-18, October.
    18. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    19. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    20. Karalis, George & Tzounis, Lazaros & Mytafides, Christos K. & Tsirka, Kyriaki & Formanek, Petr & Stylianakis, Minas & Kymakis, Emmanuel & Paipetis, Alkiviadis S., 2021. "A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT:PSS," Applied Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:120:y:2018:i:c:p:78-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.