IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1292-1298.html
   My bibliography  Save this article

Large-area implementation and critical evaluation of the material and fabrication aspects of a thin-film thermoelectric generator based on aluminum-doped zinc oxide

Author

Listed:
  • Tappura, Kirsi
  • Juntunen, Taneli
  • Jaakkola, Kaarle
  • Ruoho, Mikko
  • Tittonen, Ilkka
  • Ritasalo, Riina
  • Pudas, Marko

Abstract

A large-area thermoelectric generator (TEG) utilizing a folded thin-film concept is implemented and the performance evaluated for near room temperature applications having modest temperature gradients (<50 K). The TEGs with the area of ∼0.33 m2 are shown capable of powering a wireless sensor node of multiple sensors suitable e.g. for monitoring environmental variables in buildings. The TEGs are based on a transparent, non-toxic and abundant thermoelectric material, i.e. aluminium-doped zinc oxide (AZO), deposited on flexible substrates. After folding, both the electrical current and heat flux are in the plane of the thermoelectric thin-film. Heat leakage in the folded TEG is shown to be minimal (close to that of air), enabling sufficient temperature gradients without efficient heat sinks, contrary to the conventional TEGs having the thermal flux and electrical current perpendicular to the plane of the thermoelectric films. The long-term stability studies reveal that there are no significant changes in the electrical or thermoelectric properties of AZO over several months, while the contact resistance between AZO and silver ink is an issue exhibiting a continuous increase over time. The performance of the TEGs and technological implications in relation to a state-of-the-art thermoelectric material are further assessed via a computational study.

Suggested Citation

  • Tappura, Kirsi & Juntunen, Taneli & Jaakkola, Kaarle & Ruoho, Mikko & Tittonen, Ilkka & Ritasalo, Riina & Pudas, Marko, 2020. "Large-area implementation and critical evaluation of the material and fabrication aspects of a thin-film thermoelectric generator based on aluminum-doped zinc oxide," Renewable Energy, Elsevier, vol. 147(P1), pages 1292-1298.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1292-1298
    DOI: 10.1016/j.renene.2019.09.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alex Morata & Mercè Pacios & Gerard Gadea & Cristina Flox & Doris Cadavid & Andreu Cabot & Albert Tarancón, 2018. "Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    3. LeBlanc, Saniya & Yee, Shannon K. & Scullin, Matthew L. & Dames, Chris & Goodson, Kenneth E., 2014. "Material and manufacturing cost considerations for thermoelectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 313-327.
    4. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    5. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    6. Tappura, Kirsi, 2018. "A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications," Renewable Energy, Elsevier, vol. 120(C), pages 78-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    2. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    3. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    4. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    5. Ouyang, Zhongliang & Li, Dawen, 2018. "Design of segmented high-performance thermoelectric generators with cost in consideration," Applied Energy, Elsevier, vol. 221(C), pages 112-121.
    6. Wang, Yijiang & Peng, Yizhu & Guo, Kehui & Zheng, Xiaofeng & Darkwa, Jo & Zhong, Hua, 2021. "Experimental investigation on performance improvement of thermoelectric generator based on phase change materials and heat transfer enhancement," Energy, Elsevier, vol. 229(C).
    7. F. P. Brito & João Silva Peixoto & Jorge Martins & António P. Gonçalves & Loucas Louca & Nikolaos Vlachos & Theodora Kyratsi, 2021. "Analysis and Design of a Silicide-Tetrahedrite Thermoelectric Generator Concept Suitable for Large-Scale Industrial Waste Heat Recovery," Energies, MDPI, vol. 14(18), pages 1-21, September.
    8. Karami Rad, Meysam & Rezania, Alireza & Omid, Mahmoud & Rajabipour, Ali & Rosendahl, Lasse, 2019. "Study on material properties effect for maximization of thermoelectric power generation," Renewable Energy, Elsevier, vol. 138(C), pages 236-242.
    9. Liu, Xiaoli & Jani, Ruchita & Orisakwe, Esther & Johnston, Conrad & Chudzinski, Piotr & Qu, Ming & Norton, Brian & Holmes, Niall & Kohanoff, Jorge & Stella, Lorenzo & Yin, Hongxi & Yazawa, Kazuaki, 2021. "State of the art in composition, fabrication, characterization, and modeling methods of cement-based thermoelectric materials for low-temperature applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Shakeel, Muhammad & Rehman, Khalid & Ahmad, Salman & Amin, Mohsin & Iqbal, Nadeem & Khan, Arshad, 2021. "A low-cost printed organic thermoelectric generator for low-temperature energy harvesting," Renewable Energy, Elsevier, vol. 167(C), pages 853-860.
    11. Peter Spriggs & Qing Wang, 2020. "Computationally Modelling the Use of Nanotechnology to Enhance the Performance of Thermoelectric Materials," Energies, MDPI, vol. 13(19), pages 1-21, September.
    12. Chen, Wei-Hsin & Carrera Uribe, Manuel & Kwon, Eilhann E. & Lin, Kun-Yi Andrew & Park, Young-Kwon & Ding, Lu & Saw, Lip Huat, 2022. "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Björn Pfeiffelmann & Ali Cemal Benim & Franz Joos, 2021. "Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review," Energies, MDPI, vol. 14(24), pages 1-29, December.
    14. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    15. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    17. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    18. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    19. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    20. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1292-1298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.