IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v315y2022ics0306261922004287.html
   My bibliography  Save this article

Carrier transport model and novel design for micro thermoelectric generator with enhanced performance

Author

Listed:
  • Lin, Lin
  • Yao, Bing-Qing
  • Wang, Xiao-Dong
  • Lee, Duu-Jong

Abstract

The carrier transport processes in thermoelectric materials are significantly correlated with the performance of thermoelectric devices (TEs), which is modeled in this study considering the drift-diffusion equation with thermoelectric contributions for detailing the effects of carrier transport on the yielded current density. A micro thermoelectric generator (μTEG) with boron and arsenic being respectively doped into Si0.7Ge0.3 for p-type and n-type thermoelectric materials is employed as the study case by the three-dimensional numerical simulation to reveal the effects of doping concentrations on the thermoelectric performance. Based on the simulation results a novel μTEG design that incorporates PN junctions to extract minority carriers to reduce the recombination rates of electrons and holes is proposed. The performances for conventional and the present novel μTEGs at different temperature differences are compared. The results show that there is an optimal doping concentration for the conventional μTEG to peak the output power and the thermoelectric conversion efficiency. In particular, the novel μTEG reveals a significant improvement of thermoelectric efficiency by approximately 20% as the hot-end temperature is above 900 K. The transport of minority carriers by the PN junctions demonstrates the expected effects through the analysis on the vector distribution of minority carrier current density.

Suggested Citation

  • Lin, Lin & Yao, Bing-Qing & Wang, Xiao-Dong & Lee, Duu-Jong, 2022. "Carrier transport model and novel design for micro thermoelectric generator with enhanced performance," Applied Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:appene:v:315:y:2022:i:c:s0306261922004287
    DOI: 10.1016/j.apenergy.2022.119023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
    2. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    3. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    4. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    5. Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
    6. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    7. Tappura, Kirsi, 2018. "A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications," Renewable Energy, Elsevier, vol. 120(C), pages 78-87.
    8. Yang, Yurong & Wang, Shixue & Zhu, Yu, 2020. "Evaluation method for assessing heat transfer enhancement effect on performance improvement of thermoelectric generator systems," Applied Energy, Elsevier, vol. 263(C).
    9. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    10. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    2. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    3. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    4. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    5. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    6. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    7. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    8. Lyudmyla Vikhor & Maxim Kotsur, 2023. "Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts," Energies, MDPI, vol. 16(10), pages 1-22, May.
    9. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    10. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    11. Barry, Matthew & Ying, Justin & Durka, Michael J. & Clifford, Corey E. & Reddy, B.V.K. & Chyu, Minking K., 2016. "Numerical solution of radiation view factors within a thermoelectric device," Energy, Elsevier, vol. 102(C), pages 427-435.
    12. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    13. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
    14. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
    15. Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Meng, Jing-Hui, 2015. "Optimal pulse current shape for transient supercooling of thermoelectric cooler," Energy, Elsevier, vol. 83(C), pages 788-796.
    16. Lan, Yuncheng & Lu, Junhui & Li, Junming & Wang, Suilin, 2022. "Effects of temperature-dependent thermal properties and the side leg heat dissipation on the performance of the thermoelectric generator," Energy, Elsevier, vol. 243(C).
    17. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    18. Cai, Yang & Hong, Bing-Hua & Wu, Wei-Xiong & Wang, Wei-Wei & Zhao, Fu-Yun, 2022. "Active cooling performance of a PCM-based thermoelectric device: Dynamic characteristics and parametric investigations," Energy, Elsevier, vol. 254(PB).
    19. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    20. Chen, Wei-Hsin & Lin, Yi-Xian & Wang, Xiao-Dong & Lin, Yu-Li, 2019. "A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties," Applied Energy, Elsevier, vol. 241(C), pages 11-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:315:y:2022:i:c:s0306261922004287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.