IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp909-917.html
   My bibliography  Save this article

A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source

Author

Listed:
  • Melamed, Michal
  • Ben-Tal, Aharon
  • Golany, Boaz

Abstract

Recently, there is a growing use of renewable energy in the electricity markets due to governmental subsidy aiming to comply with reduced greenhouse gas emission targets. Jointly with its highly volatile generation it greatly affects the operation planning of power plants, particularly, when addressing the unit commitment problem (UCP).

Suggested Citation

  • Melamed, Michal & Ben-Tal, Aharon & Golany, Boaz, 2018. "A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source," Renewable Energy, Elsevier, vol. 118(C), pages 909-917.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:909-917
    DOI: 10.1016/j.renene.2016.05.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116305122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santiago Cerisola & Álvaro Baíllo & José M. Fernández-López & Andrés Ramos & Ralf Gollmer, 2009. "Stochastic Power Generation Unit Commitment in Electricity Markets: A Novel Formulation and a Comparison of Solution Methods," Operations Research, INFORMS, vol. 57(1), pages 32-46, February.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Anthony Papavasiliou & Shmuel S. Oren, 2013. "Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network," Operations Research, INFORMS, vol. 61(3), pages 578-592, June.
    4. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    5. J. Benders, 2005. "Partitioning procedures for solving mixed-variables programming problems," Computational Management Science, Springer, vol. 2(1), pages 3-19, January.
    6. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.
    7. Jorge Valenzuela & Mainak Mazumdar, 2003. "Commitment of Electric Power Generators Under Stochastic Market Prices," Operations Research, INFORMS, vol. 51(6), pages 880-893, December.
    8. PAPAVASILIOU, Anthony & OREN, Schmuel S., 2013. "Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network," LIDAM Reprints CORE 2500, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yachao & Huang, Zhanghao & Zheng, Feng & Zhou, Rongyu & Le, Jian & An, Xueli, 2020. "Cooperative optimization scheduling of the electricity-gas coupled system considering wind power uncertainty via a decomposition-coordination framework," Energy, Elsevier, vol. 194(C).
    2. Zhang, Yachao & Le, Jian & Zheng, Feng & Zhang, Yi & Liu, Kaipei, 2019. "Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration," Renewable Energy, Elsevier, vol. 135(C), pages 122-135.
    3. Serhat Yüksel & Hasan Dinçer & Yurdagül Meral, 2019. "Financial Analysis of International Energy Trade: A Strategic Outlook for EU-15," Energies, MDPI, vol. 12(3), pages 1-22, January.
    4. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    5. Hongxia Liu & Huiling Wang & Zongtang Xie, 2019. "Wind utilization and carbon emissions equilibrium: Scheduling strategy for wind-thermal generation system," Energy & Environment, , vol. 30(6), pages 1111-1131, September.
    6. Kai Pan & Ming Zhao & Chung-Lun Li & Feng Qiu, 2022. "A Polyhedral Study on Fuel-Constrained Unit Commitment," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3309-3324, November.
    7. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Xiaokun Man & Hongyan Song & Huanhuan Li, 2023. "Estimating Hydropower Generation Flexibilities of a Hybrid Hydro–Wind Power System: From the Perspective of Multi-Time Scales," Energies, MDPI, vol. 16(13), pages 1-17, July.
    9. M. A. El-Shorbagy & A. A. Mousa & M. A. Farag, 2019. "An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 911-944, September.
    10. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Pan & Yongpei Guan, 2022. "Integrated Stochastic Optimal Self-Scheduling for Two-Settlement Electricity Markets," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1819-1840, May.
    2. Jianqiu Huang & Kai Pan & Yongpei Guan, 2021. "Multistage Stochastic Power Generation Scheduling Co-Optimizing Energy and Ancillary Services," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 352-369, January.
    3. Trine K. Boomsma, 2019. "Comments on: A comparative study of time aggregation techniques in relation to power capacity-expansion modeling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 406-409, October.
    4. ARAVENA, Ignacio & PAPAVASILIOU, Anthony, 2016. "An Asynchronous Distributed Algorithm for solving Stochastic Unit Commitment," LIDAM Discussion Papers CORE 2016038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
    6. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    7. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    8. Jeanne Aslak Petersen & Ditte Heide-Jørgensen & Nina Detlefsen & Trine Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
    9. Jeanne Aslak Petersen & Ditte Mølgård Heide-Jørgensen & Nina Kildegaard Detlefsen & Trine Krogh Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
    10. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    11. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    12. Lima, Ricardo M. & Novais, Augusto Q. & Conejo, Antonio J., 2015. "Weekly self-scheduling, forward contracting, and pool involvement for an electricity producer. An adaptive robust optimization approach," European Journal of Operational Research, Elsevier, vol. 240(2), pages 457-475.
    13. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.
    14. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    15. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    16. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    17. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    18. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    19. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    20. Noori, Ehsan & Khazaei, Ehsan & Tavaro, Mehdi & Bardideh, Farhad, 2019. "Economically Operation of Power Utilities Base on MILP Approach," MPRA Paper 95910, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:909-917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.