IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1203-d329051.html
   My bibliography  Save this article

Scenario Selection for Iterative Stochastic Transmission Expansion Planning

Author

Listed:
  • Faezeh Akhavizadegan

    (Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Lizhi Wang

    (Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA)

  • James McCalley

    (Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA)

Abstract

Reliable transmission expansion planning is critical to power systems’ development. To make reliable and sustainable transmission expansion plans, numerous sources of uncertainty including demand, generation capacity, and fuel cost must be taken into consideration in both spatial and temporal dimensions. This paper presents a new approach to selecting a small number of high-quality scenarios for transmission expansion. The Kantorovich distance of social welfare distributions was used to assess the quality of the selected scenarios. A case study was conducted on a power system model that represents the U.S. Eastern and Western Interconnections, and ten high-quality scenarios out of a total of one million were selected for two transmission plans. Results suggested that scenarios selected using the proposed algorithm were able to provide a much more accurate estimation of the value of transmission plans than other scenario selection algorithms in the literature.

Suggested Citation

  • Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1203-:d:329051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2013. "State-of-the-art of transmission expansion planning: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 312-319.
    2. Wook-Won Kim & Jong-Keun Park & Yong-Tae Yoon & Mun-Kyeom Kim, 2018. "Transmission Expansion Planning under Uncertainty for Investment Options with Various Lead-Times," Energies, MDPI, vol. 11(9), pages 1-19, September.
    3. Anthony Papavasiliou & Shmuel S. Oren, 2013. "Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network," Operations Research, INFORMS, vol. 61(3), pages 578-592, June.
    4. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    5. Alexandros Flamos, 2016. "A Sectoral Micro-Economic Approach to Scenario Selection and Development: The Case of the Greek Power Sector," Energies, MDPI, vol. 9(2), pages 1-12, January.
    6. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    7. Zipeng Liang & Haoyong Chen & Xiaojuan Wang & Idris Ibn Idris & Bifei Tan & Cong Zhang, 2018. "An Extreme Scenario Method for Robust Transmission Expansion Planning with Wind Power Uncertainty," Energies, MDPI, vol. 11(8), pages 1-22, August.
    8. Jing Qiu & Junhua Zhao & Dongxiao Wang, 2017. "Flexible Multi-Objective Transmission Expansion Planning with Adjustable Risk Aversion," Energies, MDPI, vol. 10(7), pages 1-20, July.
    9. Yu Min Hwang & Issac Sim & Young Ghyu Sun & Heung-Jae Lee & Jin Young Kim, 2018. "Game-Theory Modeling for Social Welfare Maximization in Smart Grids," Energies, MDPI, vol. 11(9), pages 1-23, September.
    10. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    11. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    12. Sun, M. & Teng, F. & Konstantelos, I. & Strbac, G., 2018. "An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources," Energy, Elsevier, vol. 145(C), pages 871-885.
    13. Zhou, Ying & Wang, Lizhi & McCalley, James D., 2011. "Designing effective and efficient incentive policies for renewable energy in generation expansion planning," Applied Energy, Elsevier, vol. 88(6), pages 2201-2209, June.
    14. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    15. PAPAVASILIOU, Anthony & OREN, Schmuel S., 2013. "Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network," LIDAM Reprints CORE 2500, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilin Xie & Ying Xu, 2022. "Transmission Expansion Planning Considering Wind Power and Load Uncertainties," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Victor H. Hinojosa & Joaquín Sepúlveda, 2020. "Solving the Stochastic Generation and Transmission Capacity Planning Problem Applied to Large-Scale Power Systems Using Generalized Shift-Factors," Energies, MDPI, vol. 13(13), pages 1-15, June.
    3. Hamdi Abdi & Mansour Moradi & Sara Lumbreras, 2021. "Metaheuristics and Transmission Expansion Planning: A Comparative Case Study," Energies, MDPI, vol. 14(12), pages 1-23, June.
    4. Abdulaziz Almalaq & Khalid Alqunun & Mohamed M. Refaat & Anouar Farah & Fares Benabdallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Towards Increasing Hosting Capacity of Modern Power Systems through Generation and Transmission Expansion Planning," Sustainability, MDPI, vol. 14(5), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    2. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    3. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    4. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    5. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    6. Didem Sarı Ay & Sarah M. Ryan, 2019. "Observational data-based quality assessment of scenario generation for stochastic programs," Computational Management Science, Springer, vol. 16(3), pages 521-540, July.
    7. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    8. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    9. Siddiqui, Afzal S. & Tanaka, Makoto & Chen, Yihsu, 2016. "Are targets for renewable portfolio standards too low? The impact of market structure on energy policy," European Journal of Operational Research, Elsevier, vol. 250(1), pages 328-341.
    10. Henao, A. & Sauma, E. & Reyes, T. & Gonzalez, A., 2017. "What is the value of the option to defer an investment in Transmission Expansion Planning? An estimation using Real Options," Energy Economics, Elsevier, vol. 65(C), pages 194-207.
    11. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    12. Camelo, Sergio & Papavasiliou, Anthony & de Castro, Luciano & Riascos, Álvaro & Oren, Shmuel, 2018. "A structural model to evaluate the transition from self-commitment to centralized unit commitment," Energy Economics, Elsevier, vol. 75(C), pages 560-572.
    13. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    14. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Noori, Ehsan & Khazaei, Ehsan & Tavaro, Mehdi & Bardideh, Farhad, 2019. "Economically Operation of Power Utilities Base on MILP Approach," MPRA Paper 95910, University Library of Munich, Germany.
    16. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    17. Egerer, Jonas & Grimm, Veronika & Grübel, Julia & Zöttl, Gregor, 2022. "Long-run market equilibria in coupled energy sectors: A study of uniqueness," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1335-1354.
    18. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    19. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    20. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1203-:d:329051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.