IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp1005-1012.html
   My bibliography  Save this article

Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil

Author

Listed:
  • Maia, Cristiana Brasil
  • Ferreira, André Guimarães
  • Cabezas-Gómez, Luben
  • de Oliveira Castro Silva, Janaína
  • de Morais Hanriot, Sérgio

Abstract

This paper presents a thermodynamic analysis of the drying of bananas inside a small-scale prototype solar updraft tower in Belo Horizonte, Brazil. A model based on the first and second laws of thermodynamics was developed, using the ambient conditions and airflow parameters data obtained in the experimental prototype. The exergy rates were determined, and it was concluded that the incident solar radiation plays an important role on the drying process of bananas, the higher the solar radiation, the higher the exergy rates. The exergetic efficiency was compared to that obtained without products inside the solar updraft tower, and it was found that the exergetic efficiency increased from about 20% to 27% with load.

Suggested Citation

  • Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:1005-1012
    DOI: 10.1016/j.renene.2017.07.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    2. Li, Jing-yin & Guo, Peng-hua & Wang, Yuan, 2012. "Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines," Renewable Energy, Elsevier, vol. 47(C), pages 21-28.
    3. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    4. Choi, Young Jae & Kam, Dong Hoon & Park, Yoon Won & Jeong, Yong Hoon, 2016. "Development of analytical model for solar chimney power plant with and without water storage system," Energy, Elsevier, vol. 112(C), pages 200-207.
    5. Zandian, Arash & Ashjaee, Mehdi, 2013. "The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept," Renewable Energy, Elsevier, vol. 51(C), pages 465-473.
    6. Kasaeian, A.B. & Heidari, E. & Vatan, Sh. Nasiri, 2011. "Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5202-5206.
    7. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    8. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    9. Onan, C. & Ozkan, D.B. & Erdem, S., 2010. "Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications," Energy, Elsevier, vol. 35(12), pages 5277-5285.
    10. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    11. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    12. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    13. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
    14. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    15. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    16. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    17. Celma, A.R. & Cuadros, F., 2009. "Energy and exergy analyses of OMW solar drying process," Renewable Energy, Elsevier, vol. 34(3), pages 660-666.
    18. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms," Energy, Elsevier, vol. 70(C), pages 204-211.
    19. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    20. Guo, Peng-hua & Li, Jing-yin & Wang, Yuan, 2014. "Numerical simulations of solar chimney power plant with radiation model," Renewable Energy, Elsevier, vol. 62(C), pages 24-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.
    2. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
    3. Barbosa, Eloiny Guimarães & Araujo, Marcos Eduardo Viana de & Lopes, Roberto Precci & Martins, Marcio Arêdes & Moraes, Maria Joselma de & Barbosa, Elisa Guimarães & Falconí, Javier Hernán Heredia, 2020. "Exergetic, economic and environmental (3E) analysis of a low cost solar heater in different configurations," Renewable Energy, Elsevier, vol. 160(C), pages 1096-1104.
    4. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).
    5. Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    2. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
    3. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    4. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    5. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.
    6. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    7. Waseem Amjad & Muhammad Ali Raza & Furqan Asghar & Anjum Munir & Faisal Mahmood & Syed Nabeel Husnain & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator," Energies, MDPI, vol. 15(4), pages 1-15, February.
    8. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    9. Vieira, R.S. & Petry, A.P. & Rocha, L.A.O. & Isoldi, L.A. & dos Santos, E.D., 2017. "Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design," Renewable Energy, Elsevier, vol. 109(C), pages 222-234.
    10. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    11. Yataganbaba, Alptug & Kurtbaş, İrfan, 2016. "A scientific approach with bibliometric analysis related to brick and tile drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 206-224.
    12. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    13. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    14. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    15. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    16. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    17. Shen, Wenqing & Ming, Tingzhen & Ding, Yan & Wu, Yongjia & de_Richter, Renaud K., 2014. "Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind," Renewable Energy, Elsevier, vol. 68(C), pages 662-676.
    18. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    19. Darvishi, Hosain & Azadbakht, Mohsen & Noralahi, Bashir, 2018. "Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation," Renewable Energy, Elsevier, vol. 120(C), pages 201-208.
    20. Praveen, Vivek & Das, Pritam & Chandramohan, V.P., 2021. "A novel concept of introducing a fillet at the chimney base of solar updraft tower plant and thereby improving the performance: A numerical study," Renewable Energy, Elsevier, vol. 179(C), pages 37-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:1005-1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.