IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i3p353-360.html
   My bibliography  Save this article

Interpretations of alternative uncertainty representations in a reliability and risk analysis context

Author

Listed:
  • Aven, T.

Abstract

Probability is the predominant tool used to measure uncertainties in reliability and risk analyses. However, other representations also exist, including imprecise (interval) probability, fuzzy probability and representations based on the theories of evidence (belief functions) and possibility. Many researchers in the field are strong proponents of these alternative methods, but some are also sceptical. In this paper, we address one basic requirement set for quantitative measures of uncertainty: the interpretation needed to explain what an uncertainty number expresses. We question to what extent the various measures meet this requirement. Comparisons are made with probabilistic analysis, where uncertainty is represented by subjective probabilities, using either a betting interpretation or a reference to an uncertainty standard interpretation. By distinguishing between chances (expressing variation) and subjective probabilities, new insights are gained into the link between the alternative uncertainty representations and probability.

Suggested Citation

  • Aven, T., 2011. "Interpretations of alternative uncertainty representations in a reliability and risk analysis context," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 353-360.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:3:p:353-360
    DOI: 10.1016/j.ress.2010.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010002449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubois, Didier, 2006. "Possibility theory and statistical reasoning," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 47-69, November.
    2. Dubois, Didier & Prade, Henri, 1989. "Fuzzy sets, probability and measurement," European Journal of Operational Research, Elsevier, vol. 40(2), pages 135-154, May.
    3. Nozer D. Singpurwalla & Jane M. Booker, 2004. "Membership Functions and Probability Measures of Fuzzy Sets," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 867-877, January.
    4. Kozine, Igor O. & Utkin, Lev V., 2002. "Processing unreliable judgements with an imprecise hierarchical model," Risk, Decision and Policy, Cambridge University Press, vol. 7(3), pages 325-339, December.
    5. Baudrit, C. & Dubois, D., 2006. "Practical representations of incomplete probabilistic knowledge," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 86-108, November.
    6. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    7. Aven, Terje, 2010. "Some reflections on uncertainty analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 195-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    2. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    3. Qiu, S. & Rachedi, N. & Sallak, M. & Vanderhaegen, F., 2017. "A quantitative model for the risk evaluation of driver-ADAS systems under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 184-191.
    4. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    5. Terje Aven, 2017. "Improving the foundation and practice of reliability engineering," Journal of Risk and Reliability, , vol. 231(3), pages 295-305, June.
    6. Thekdi, Shital A. & Aven, Terje, 2018. "A methodology to evaluate risk for supporting decisions involving alignment with organizational values," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 84-93.
    7. Mancuso, A. & Compare, M. & Salo, A. & Zio, E. & Laakso, T., 2016. "Risk-based optimization of pipe inspections in large underground networks with imprecise information," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 228-238.
    8. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    9. Qiu, Siqi & Sallak, Mohamed & Schön, Walter & Ming, Henry X.G., 2018. "Extended LK heuristics for the optimization of linear consecutive-k-out-of-n: F systems considering parametric uncertainty and model uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 51-61.
    10. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    11. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
    12. Nicola Pedroni & Enrico Zio, 2013. "Uncertainty Analysis in Fault Tree Models with Dependent Basic Events," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1146-1173, June.
    13. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    14. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    15. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.
    16. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    18. Qiu, Siqi & Ming, Xinguo, 2020. "An extended Birnbaum importance-based two-stage heuristic for component assignment problems under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    20. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    21. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ripamonti, G. & Lonati, G. & Baraldi, P. & Cadini, F. & Zio, E., 2013. "Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 98-105.
    2. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    3. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    4. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.
    5. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    6. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    7. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    8. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    9. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    10. Nicola Pedroni & Enrico Zio, 2013. "Uncertainty Analysis in Fault Tree Models with Dependent Basic Events," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1146-1173, June.
    11. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.
    12. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    13. Luciano Stefanini & Maria Letizia Guerra, 2016. "On Possibilistic Representations of Fuzzy Intervals," Working Papers 1602, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2016.
    14. Hu, Lunhu & Kang, Rui & Pan, Xing & Zuo, Dujun, 2020. "Risk assessment of uncertain random system—Level-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    15. Helton, Jon C. & Johnson, Jay D., 2011. "Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1034-1052.
    16. Yu, Xuchao & Liang, Wei & Zhang, Laibin & Reniers, Genserik & Lu, Linlin, 2018. "Risk assessment of the maintenance process for onshore oil and gas transmission pipelines under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 50-67.
    17. Baustert, Paul & Othoniel, Benoit & Rugani, Benedetto & Leopold, Ulrich, 2018. "Uncertainty analysis in integrated environmental models for ecosystem service assessments: Frameworks, challenges and gaps," Ecosystem Services, Elsevier, vol. 33(PB), pages 110-123.
    18. Montes, Ignacio & Miranda, Enrique & Montes, Susana, 2014. "Stochastic dominance with imprecise information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 868-886.
    19. Aven, Terje & Guikema, Seth, 2011. "Whose uncertainty assessments (probability distributions) does a risk assessment report: the analysts' or the experts'?," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1257-1262.
    20. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:3:p:353-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.