IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v198y2020ics095183201930136x.html
   My bibliography  Save this article

Risk assessment of uncertain random system—Level-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis

Author

Listed:
  • Hu, Lunhu
  • Kang, Rui
  • Pan, Xing
  • Zuo, Dujun

Abstract

Uncertainty analysis plays a significant role in risk assessment, which consists of two tasks: uncertainty expressions of input variables in the model and their propagations through the model built. We aim to provide, in fault tree analysis context, suitable methods of expression and propagation of uncertainty corresponding to different stages of knowledge that the risk analyst own, where frequentist probability is used to express the aleatory uncertainty and uncertainty theory is used to represent the epistemic uncertainty. To do so, we divide the analyst's knowledge state into five different stages, and develop the correct expression of uncertainty corresponding to each stage, where different combinations of probability and uncertainty are considered. Methods of propagation of these uncertainties through fault trees are further developed, where we introduce probability distributions, uncertainty distributions, newly-developed level-2 distributions, and the varying time t into the operational law for Boolean uncertain random system to better address the needs of practical risk assessments. A case study is conducted to show the differences in the propagation methods corresponding to various knowledge stages, and the results highlight that the proposed methods are effective and could deliver clear messages to decision makers.

Suggested Citation

  • Hu, Lunhu & Kang, Rui & Pan, Xing & Zuo, Dujun, 2020. "Risk assessment of uncertain random system—Level-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:reensy:v:198:y:2020:i:c:s095183201930136x
    DOI: 10.1016/j.ress.2020.106874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201930136X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubois, Didier, 2006. "Possibility theory and statistical reasoning," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 47-69, November.
    2. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    3. Aven, Terje, 2010. "On how to define, understand and describe risk," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 623-631.
    4. Roger Flage & Piero Baraldi & Enrico Zio & Terje Aven, 2013. "Probability and Possibility‐Based Representations of Uncertainty in Fault Tree Analysis," Risk Analysis, John Wiley & Sons, vol. 33(1), pages 121-133, January.
    5. Durga Rao, K. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2007. "Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 947-956.
    6. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    7. Durga Rao Karanki & Hari Shankar Kushwaha & Ajit Kumar Verma & Srividya Ajit, 2009. "Uncertainty Analysis Based on Probability Bounds (P‐Box) Approach in Probabilistic Safety Assessment," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 662-675, May.
    8. Meilin Wen & Rui Kang, 2016. "Reliability analysis in uncertain random system," Fuzzy Optimization and Decision Making, Springer, vol. 15(4), pages 491-506, December.
    9. Limbourg, Philipp & de Rocquigny, Etienne, 2010. "Uncertainty analysis using evidence theory – confronting level-1 and level-2 approaches with data availability and computational constraints," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 550-564.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Jin, Ting & Ding, Hui & Xia, Hongxuan & Bao, Jinfeng, 2021. "Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Lu, Ziqiang & Zhu, Yuanguo, 2022. "Nonlinear impulsive problems for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Zhang, Sen-Ju & Kang, Rui & Lin, Yan-Hui, 2021. "Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Pan, Xing & Zuo, Dujun & Zhang, Wenjin & Hu, Lunhu & Wang, Huixiong & Jiang, Jing, 2021. "Research on Human Error Risk Evaluation Using Extended Bayesian Networks with Hybrid Data," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Chen, Ying & Li, Shumin & Kang, Rui, 2021. "Epistemic uncertainty quantification via uncertainty theory in the reliability evaluation of a system with failure Trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Hu, Lunhu & Pan, Xing & Ding, Song & Zuo, Dujun & Kang, Rui, 2022. "A quantitative input for evaluating human error of visual Neglection: Prediction of Operator's detection time spent on perceiving critical visual signal," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Hu, Xiaonong & Fang, Genshen & Yang, Jiayu & Zhao, Lin & Ge, Yaojun, 2023. "Simplified models for uncertainty quantification of extreme events using Monte Carlo technique," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Liu, Yushan & Li, Luyi & Zhao, Sihan & Song, Shufang, 2021. "A global surrogate model technique based on principal component analysis and Kriging for uncertainty propagation of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Xu, Qinqin & Zhu, Yuanguo, 2023. "Reliability analysis of uncertain random systems based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    14. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Lu, Ziqiang & Zhu, Yuanguo, 2023. "Asymptotic stability in pth moment of uncertain dynamical systems with time-delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 323-335.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu Duong Le Duy & Laurence Dieulle & Dominique Vasseur & Christophe Bérenguer & Mathieu Couplet, 2013. "An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications," Journal of Risk and Reliability, , vol. 227(5), pages 471-490, October.
    2. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    3. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    4. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    5. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.
    6. Aven, Terje, 2012. "The risk concept—historical and recent development trends," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 33-44.
    7. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    8. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    9. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    10. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    11. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    12. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    13. Ripamonti, G. & Lonati, G. & Baraldi, P. & Cadini, F. & Zio, E., 2013. "Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 98-105.
    14. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    15. Nicola Pedroni & Enrico Zio, 2013. "Uncertainty Analysis in Fault Tree Models with Dependent Basic Events," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1146-1173, June.
    16. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    17. R. G. van der Vegt, 2018. "Risk Assessment and Risk Governance of Liquefied Natural Gas Development in Gladstone, Australia," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1830-1846, September.
    18. Roger Flage & Terje Aven & Piero Baraldi & Enrico Zio, 2012. "An imprecision importance measure for uncertainty representations interpreted as lower and upper probabilities, with special emphasis on possibility theory," Journal of Risk and Reliability, , vol. 226(6), pages 656-665, December.
    19. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    20. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:198:y:2020:i:c:s095183201930136x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.