IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v236y2023ics0951832023002211.html
   My bibliography  Save this article

Wind farm life cycle cost modelling based on oversizing capacity under load sharing configuration

Author

Listed:
  • Kristjanpoller, Fredy
  • Cárdenas-Pantoja, Nicolás
  • Viveros, Pablo
  • Pascual, Rodrigo

Abstract

Renewable energies are becoming the norm and as such they are responsible for the energy supply of large cities, therefore, there is a need for this energy sources to be able to deliver a determined level of service. The latter is especially complex for wind farms due to the high stress and rough climate conditions in which they operate. A higher service level is usually achieved by injecting budget on the operation of plants, namely, maintenance and asset management to reduce the risk of failure and outage. This article proposes a methodology to study the improvement of the service level, availability, and reliability of a plant from the design stage through oversizing the allocation of Wind Turbine Generators (WTG) without compromising the project Life Cycle Cost, indeed, results reveal up to a 2.11% of improvement on availability, a reduction of up to 18.48% on corrective maintenance costs and up to a 1.44% reduction of total differential costs. Furthermore, the evidence found suggests that the load sharing perspective imprints less stress on the WTG, enabling higher service levels at reduced costs and better results for maintenance and asset management planning, thus improving efficiency focussing on preventive maintenance and reliability improving.

Suggested Citation

  • Kristjanpoller, Fredy & Cárdenas-Pantoja, Nicolás & Viveros, Pablo & Pascual, Rodrigo, 2023. "Wind farm life cycle cost modelling based on oversizing capacity under load sharing configuration," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023002211
    DOI: 10.1016/j.ress.2023.109307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023002211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guezuraga, Begoña & Zauner, Rudolf & Pölz, Werner, 2012. "Life cycle assessment of two different 2 MW class wind turbines," Renewable Energy, Elsevier, vol. 37(1), pages 37-44.
    2. Li, Yao & Coolen, Frank P.A. & Zhu, Caichao & Tan, Jianjun, 2020. "Reliability assessment of the hydraulic system of wind turbines based on load-sharing using survival signature," Renewable Energy, Elsevier, vol. 153(C), pages 766-776.
    3. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Herbert, G.M. Joselin & Iniyan, S. & Goic, Ranko, 2010. "Performance, reliability and failure analysis of wind farm in a developing Country," Renewable Energy, Elsevier, vol. 35(12), pages 2739-2751.
    6. Cetinay, Hale & Kuipers, Fernando A. & Guven, A. Nezih, 2017. "Optimal siting and sizing of wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 51-58.
    7. Watts, David & Oses, Nicolás & Pérez, Rodrigo, 2016. "Assessment of wind energy potential in Chile: A project-based regional wind supply function approach," Renewable Energy, Elsevier, vol. 96(PA), pages 738-755.
    8. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2022. "A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Eryilmaz, Serkan & Kan, Cihangir, 2020. "Reliability based modeling and analysis for a wind power system integrated by two wind farms considering wind speed dependence," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Dui, Hongyan & Wei, Xuan & Xing, Liudong & Chen, Liwei, 2023. "Performance-based maintenance analysis and resource allocation in irrigation networks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    14. Shekhar, Shivang & Ghosh, Jayadipta, 2020. "A metamodeling based seismic life-cycle cost assessment framework for highway bridge structures," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    15. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    16. Yao Li & Caichao Zhu & Xu Chen & Jianjun Tan, 2020. "Fatigue Reliability Analysis of Wind Turbine Drivetrain Considering Strength Degradation and Load Sharing Using Survival Signature and FTA," Energies, MDPI, vol. 13(8), pages 1-21, April.
    17. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    18. Amri, Fethi, 2017. "Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 527-534.
    19. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    20. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    21. Bustos, F. & Lazo, C. & Contreras, J. & Fuentes, A., 2016. "Analysis of a solar and aerothermal plant combined with a conventional system in an ESCO model in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1156-1167.
    22. Kristjanpoller, Fredy & Crespo, Adolfo & Barberá, Luis & Viveros, Pablo, 2017. "Biomethanation plant assessment based on reliability impact on operational effectiveness," Renewable Energy, Elsevier, vol. 101(C), pages 301-310.
    23. Watts, David & Jara, Danilo, 2011. "Statistical analysis of wind energy in Chile," Renewable Energy, Elsevier, vol. 36(5), pages 1603-1613.
    24. Li, Qiangfeng & Duan, Huabo & Xie, Minghui & Kang, Peng & Ma, Yi & Zhong, Ruoyu & Gao, Tianming & Zhong, Weiqiong & Wen, Bojie & Bai, Feng & Vuppaladadiyam, Arun K., 2021. "Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    25. Shahbaz, Muhammad & Topcu, Betül Altay & Sarıgül, Sevgi Sümerli & Vo, Xuan Vinh, 2021. "The effect of financial development on renewable energy demand: The case of developing countries," Renewable Energy, Elsevier, vol. 178(C), pages 1370-1380.
    26. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    27. Tian, Zhigang & Zhang, Han, 2022. "Wind farm predictive maintenance considering component level repairs and economic dependency," Renewable Energy, Elsevier, vol. 192(C), pages 495-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    2. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    3. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Sachan, Anshita & Sahu, Udit Kumar & Pradhan, Ashis Kumar & Thomas, Ronny, 2023. "Examining the drivers of renewable energy consumption: Evidence from BRICS nations," Renewable Energy, Elsevier, vol. 202(C), pages 1402-1411.
    6. Li, He & Guedes Soares, C, 2022. "Assessment of failure rates and reliability of floating offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    8. Ghazouani, Tarek, 2022. "Dynamic impact of globalization on renewable energy consumption: Non-parametric modelling evidence," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    9. Postnikov, Ivan, 2022. "A reliability assessment of the heating from a hybrid energy source based on combined heat and power and wind power plants," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    10. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    12. Afef Fekih & Hamed Habibi & Silvio Simani, 2022. "Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview," Energies, MDPI, vol. 15(19), pages 1-21, September.
    13. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    14. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    15. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    16. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    17. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    19. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023002211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.