IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v223y2022ics0951832022001041.html
   My bibliography  Save this article

Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers

Author

Listed:
  • Li, Qing
  • Li, Mingchu
  • Gong, Zhongqiang
  • Tian, Yuan
  • Zhang, Runfa

Abstract

This paper studies an interdependent facility location and protection problem against multiple non-cooperative limited choice attackers. In a supply network, the defender and attackers have completely opposite objectives by optimizing their respective patterns. This interaction is represented with a game-theoretic bilevel framework. The defender as a leader in the upper-level makes location and protection decisions while the attackers as followers in the lower-level carry out attack strategies following a limited choice rule. A real supposition is that the effects of protection and attack are imperfect, making the decision-dependent uncertainty in the post-disruption states of the facilities. We incorporate the uncertainty into a two-stage model and formulate the resulting model as a two-stage stochastic bilevel programming problem. The first stage problem involves a bilevel defender–attacker model that locates and protects facilities against attacks, while the second stage problem involves allocation decisions around customers that optimizes a scenario-based minimization problem of allocating demand capacity. Due to the NP-hardness of the considered problem, we develop a hybrid solution method based on genetic algorithm and column generation to solve the model. Computational experiments show the efficiency of the proposed algorithm and demonstrate the effects of limited choice and risk propagation on the optimal solutions.

Suggested Citation

  • Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001041
    DOI: 10.1016/j.ress.2022.108440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    2. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    4. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Wu, Yipeng & Chen, Zhilong & Gong, Huadong & Feng, Qilin & Chen, Yicun & Tang, Haizhou, 2021. "Defender–attacker–operator: Tri-level game-theoretic interdiction analysis of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Kjell Hausken & Fei He, 2016. "On the Effectiveness of Security Countermeasures for Critical Infrastructures," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 711-726, April.
    7. Hausken, Kjell, 2017. "Defense and attack for interdependent systems," European Journal of Operational Research, Elsevier, vol. 256(2), pages 582-591.
    8. Hausken, Kjell, 2006. "Income, interdependence, and substitution effects affecting incentives for security investment," Journal of Accounting and Public Policy, Elsevier, vol. 25(6), pages 629-665.
    9. Hernandez, Ivan & Emmanuel Ramirez-Marquez, Jose & Rainwater, Chase & Pohl, Edward & Medal, Hugh, 2014. "Robust facility location: Hedging against failures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 73-80.
    10. Cheung, Kam-Fung & Bell, Michael G.H., 2021. "Attacker–defender model against quantal response adversaries for cyber security in logistics management: An introductory study," European Journal of Operational Research, Elsevier, vol. 291(2), pages 471-481.
    11. Li, Qing & Li, Mingchu & Zhang, Runfa & Gan, Jianyuan, 2021. "A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    13. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Zhang, Ying & Qi, Mingyao & Lin, Wei-Hua & Miao, Lixin, 2015. "A metaheuristic approach to the reliable location routing problem under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 90-110.
    15. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    16. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    17. Hausken, Kjell & Bier, Vicki M., 2011. "Defending against multiple different attackers," European Journal of Operational Research, Elsevier, vol. 211(2), pages 370-384, June.
    18. Bricha, Naji & Nourelfath, Mustapha, 2015. "Protection of warehouses and plants under capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 93-104.
    19. Kjell Hausken, 2011. "Protecting complex infrastructures against multiple strategic attackers," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 11-29.
    20. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
    21. Jiang, J. & Liu, X., 2018. "Multi-objective Stackelberg game model for water supply networks against interdictions with incomplete information," European Journal of Operational Research, Elsevier, vol. 266(3), pages 920-933.
    22. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    23. Jalali, Sajjad & Seifbarghy, Mehdi & Niaki, Seyed Taghi Akhavan, 2018. "A risk-averse location-protection problem under intentional facility disruptions: A modified hybrid decomposition algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 196-219.
    24. Ouyang, Min & Liu, Chuang & Wu, Shengyu, 2020. "Worst-case vulnerability assessment and mitigation model of urban utility tunnels," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    25. Chopra, Shauhrat S. & Khanna, Vikas, 2015. "Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 865-877.
    26. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    27. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
    28. Vicki Bier & Hoa Han & Lorna Zack, 2008. "Models of Interdependent Security along the Milk Supply Chain," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1265-1271.
    29. Garay-Sianca, Aniela & Nurre Pinkley, Sarah G., 2021. "Interdependent integrated network design and scheduling problems with movement of machines," European Journal of Operational Research, Elsevier, vol. 289(1), pages 297-327.
    30. Bose, Gautam & Konrad, Kai A., 2020. "Devil take the hindmost: Deflecting attacks to other defenders," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    31. Kjell Hausken, 2019. "Defence and attack of complex interdependent systems," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(3), pages 364-376, March.
    32. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    33. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    34. Perea, Federico & Puerto, Justo, 2013. "Revisiting a game theoretic framework for the robust railway network design against intentional attacks," European Journal of Operational Research, Elsevier, vol. 226(2), pages 286-292.
    35. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    36. Vicki M. Bier & Louis A. Cox & M. Naceur Azaiez, 2009. "Why Both Game Theory and Reliability Theory Are Important in Defending Infrastructure against Intelligent Attacks," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 1, pages 1-11, Springer.
    37. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    38. Paul, Jomon A. & Zhang, Minjiao, 2021. "Decision support model for cybersecurity risk planning: A two-stage stochastic programming framework featuring firms, government, and attacker," European Journal of Operational Research, Elsevier, vol. 291(1), pages 349-364.
    39. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    40. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    41. Ramirez-Marquez, Jose E. & Rocco S, Claudio M. & Levitin, Gregory, 2009. "Optimal protection of general source–sink networks via evolutionary techniques," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1676-1684.
    42. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2021. "The impact of congestion on protection decisions in supply networks under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Li, Qing & Li, Mingchu & Zhang, Runfa & Gan, Jianyuan, 2021. "A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    4. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Wang, Shuliang & Gu, Xifeng & Luan, Shengyang & Zhao, Mingwei, 2021. "Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    6. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    7. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    8. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    10. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    11. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    13. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Gabriel Kuper & Fabio Massacci & Woohyun Shim & Julian Williams, 2020. "Who Should Pay for Interdependent Risk? Policy Implications for Security Interdependence Among Airports," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1001-1019, May.
    15. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    16. Almoghathawi, Yasser & Selim, Shokri & Barker, Kash, 2023. "Community structure recovery optimization for partial disruption, functionality, and restoration in interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    18. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    19. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    20. Baraldi, Piero & Castellano, Andrea & Shokry, Ahmed & Gentile, Ugo & Serio, Luigi & Zio, Enrico, 2020. "A Feature Selection-based Approach for the Identification of Critical Components in Complex Technical Infrastructures: Application to the CERN Large Hadron Collider," Reliability Engineering and System Safety, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.