IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v201y2012i1p345-36510.1007-s10479-012-1170-x.html
   My bibliography  Save this article

The stochastic interdiction median problem with disruption intensity levels

Author

Listed:
  • Chaya Losada
  • M. Scaparra
  • Richard Church
  • Mark Daskin

Abstract

In this paper we introduce a stochastic interdiction problem for median systems in which the operational state of the system’s disrupted elements in the aftermath of the disruption is uncertain as it is based on the intensity of the disruption. We assume that a disruption disables a facility with a given probability and this probability depends on the intensity of the disruption. The objective of this problem is to identify which disruption scenario entails a maximum overall traveling distance in serving all customers. We show that the initial two stage stochastic formulation can be reformulated into a deterministic counterpart whose size is polynomial in the number of facilities and intensity levels. Then, our ensuing efforts to solve the problem efficiently focus on studying alternative deterministic formulations that allow the solution of realistic size instances of the model. We observe that the most efficient of the deterministic formulations provide great scalability with respect to variations in the input parameters and size of the instances solved. Finally, we analyze the robustness of the optimal solutions due to misestimations in the probability functions that relate disruption intensity levels with the probabilities of facility survivability. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
  • Handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:345-365:10.1007/s10479-012-1170-x
    DOI: 10.1007/s10479-012-1170-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1170-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1170-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    2. Harald Held & Raymond Hemmecke & David L. Woodruff, 2005. "A decomposition algorithm applied to planning the interdiction of stochastic networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 321-328, June.
    3. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    4. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    5. Scaparra, Maria P. & Church, Richard L., 2008. "An exact solution approach for the interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 189(1), pages 76-92, August.
    6. Paola Cappanera & Maria Paola Scaparra, 2011. "Optimal Allocation of Protective Resources in Shortest-Path Networks," Transportation Science, INFORMS, vol. 45(1), pages 64-80, February.
    7. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    8. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    9. Alan W. McMasters & Thomas M. Mustin, 1970. "Optimal interdiction of a supply network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 17(3), pages 261-268, September.
    10. Deniz Aksen & Nuray Piyade & Necati Aras, 2010. "The budget constrained r-interdiction median problem with capacity expansion," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 269-291, September.
    11. Johannes O. Royset & R. Kevin Wood, 2007. "Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 175-184, May.
    12. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    13. Richard Wollmer, 1964. "Removing Arcs from a Network," Operations Research, INFORMS, vol. 12(6), pages 934-940, December.
    14. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    15. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    16. Bruce Golden, 1978. "A problem in network interdiction," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(4), pages 711-713, December.
    17. Timothy Matisziw & Alan Murray & Tony Grubesic, 2010. "Strategic Network Restoration," Networks and Spatial Economics, Springer, vol. 10(3), pages 345-361, September.
    18. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
    19. Nedialko Dimitrov & Dennis Michalopoulos & David Morton & Michael Nehme & Feng Pan & Elmira Popova & Erich Schneider & Gregory Thoreson, 2011. "Network deployment of radiation detectors with physics-based detection probability calculations," Annals of Operations Research, Springer, vol. 187(1), pages 207-228, July.
    20. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    21. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily A. Heath & John E. Mitchell & Thomas C. Sharkey, 2016. "Applying ranking and selection procedures to long-term mitigation for improved network restoration," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 447-481, September.
    2. Hernandez, Ivan & Emmanuel Ramirez-Marquez, Jose & Rainwater, Chase & Pohl, Edward & Medal, Hugh, 2014. "Robust facility location: Hedging against failures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 73-80.
    3. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2021. "The impact of congestion on protection decisions in supply networks under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    4. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Harun, Sarah, 2020. "A stochastic programming model with endogenous and exogenous uncertainty for reliable network design under random disruption," European Journal of Operational Research, Elsevier, vol. 285(2), pages 670-694.
    5. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    6. Girish Ch. Dey & Mamata Jenamani, 2019. "Optimizing fortification plan of capacitated facilities with maximum distance limits," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 151-173, March.
    7. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    8. Michael Stiglmayr & José Figueira & Kathrin Klamroth, 2014. "On the multicriteria allocation problem," Annals of Operations Research, Springer, vol. 222(1), pages 535-549, November.
    9. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    10. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    11. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2016. "Hub Interdiction & Hub Protection problems: Model formulations & Exact Solution methods. (Revised)," IIMA Working Papers WP2016-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    14. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2017. "Responsive contingency planning of capacitated supply networks under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 13-37.
    2. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    3. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2021. "The impact of congestion on protection decisions in supply networks under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    4. Sarhadi, Hassan & Tulett, David M. & Verma, Manish, 2017. "An analytical approach to the protection planning of a rail intermodal terminal network," European Journal of Operational Research, Elsevier, vol. 257(2), pages 511-525.
    5. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    6. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    7. Leonardo Lozano & J. Cole Smith, 2017. "A Backward Sampling Framework for Interdiction Problems with Fortification," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 123-139, February.
    8. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    9. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    10. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    11. Annunziata Esposito Amideo & Stefano Starita & Maria Paola Scaparra, 2019. "Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    12. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    13. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    14. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    15. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Harun, Sarah, 2020. "A stochastic programming model with endogenous and exogenous uncertainty for reliable network design under random disruption," European Journal of Operational Research, Elsevier, vol. 285(2), pages 670-694.
    16. Brian Lunday & Hanif Sherali, 2012. "Network interdiction to minimize the maximum probability of evasion with synergy between applied resources," Annals of Operations Research, Springer, vol. 196(1), pages 411-442, July.
    17. F. Parvaresh & S. Hashemi Golpayegany & S. Moattar Husseini & B. Karimi, 2013. "Solving the p-hub Median Problem Under Intentional Disruptions Using Simulated Annealing," Networks and Spatial Economics, Springer, vol. 13(4), pages 445-470, December.
    18. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    19. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    20. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:345-365:10.1007/s10479-012-1170-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.