IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021004452.html
   My bibliography  Save this article

An extended recursive decomposition algorithm for dynamic seismic reliability evaluation of lifeline networks with dependent component failures

Author

Listed:
  • He, Jun

Abstract

An extended recursive decomposition algorithm (e-RDA) is proposed to evaluate the dynamic seismic reliabilities of the complex and/or large-sized lifeline network systems with dependent component failures. To effectively analyze statistical dependence of failures of system components, multivariate extreme value response distributions of the components and joint occurrence probabilities of the (disjoint) shortest paths and cuts of systems, a multivariate Gumbel Copula is developed and introduced into the original recursive decomposition algorithm (RDA). Based on the established joint occurrence probability formula of the paths and cuts, two techniques that may accelerate convergence of the upper and lower reliability bounds of complex and/or large-sized systems are developed and embedded into the RDA. Illustrative examples are presented to demonstrate the accuracy, effectiveness and use of the extended RDA for the node weight (only node-type components may fail), edge weight (only line-type components may fail) and general weight (both node- and line-type components may fail) lifeline network systems.

Suggested Citation

  • He, Jun, 2021. "An extended recursive decomposition algorithm for dynamic seismic reliability evaluation of lifeline networks with dependent component failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021004452
    DOI: 10.1016/j.ress.2021.107929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byun, Ji-Eun & Song, Junho, 2020. "Efficient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    2. Kang, Won-Hee & Kliese, Alyce, 2014. "A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 81-91.
    3. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Azhdari, Armaghan & Ardakan, Mostafa Abouei & Najafi, Mojtaba, 2023. "An approach for reliability optimization of a multi-state centralized network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Li, Shunlong & Wang, Jie & He, Shaoyang, 2023. "Connectivity probability evaluation of a large-scale highway bridge network using network decomposition," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2022. "An adaptive subset simulation algorithm for system reliability analysis with discontinuous limit states," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    2. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    3. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    5. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    6. Byun, Ji-Eun & Song, Junho, 2021. "Generalized matrix-based Bayesian network for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Nir Billfeld & Moshe Kim, 2019. "Semiparametric Wavelet-based JPEG IV Estimator for endogenously truncated data," Papers 1908.02166, arXiv.org.
    8. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    9. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    10. Fabrizio Durante & Marius Hofert & Matthias Scherer, 2010. "Multivariate Hierarchical Copulas with Shocks," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 681-694, December.
    11. Fathollah Bistouni & Mohsen Jahanshahi, 2016. "Reliability analysis of multilayer multistage interconnection networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(3), pages 529-551, July.
    12. Georg Ch. Pflug & Alois Pichler, 2018. "Systemic risk and copula models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 465-483, June.
    13. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    14. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    15. Zheng, Kedi & Chen, Huiyao & Wang, Yi & Chen, Qixin, 2022. "Data-driven financial transmission right scenario generation and speculation," Energy, Elsevier, vol. 238(PC).
    16. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    17. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    18. Ioannis S. Triantafyllou, 2024. "Archimedean Copulas-Based Estimation under One-Parameter Distributions in Coherent Systems," Mathematics, MDPI, vol. 12(2), pages 1-14, January.
    19. Andreea Röthig & Andreas Röthig & Carl Chiarella, 2015. "On Candlestick-based Trading Rules Profitability Analysis via Parametric Bootstraps and Multivariate Pair-Copula based Models," Research Paper Series 362, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Billio Monica & Frattarolo Lorenzo & Guégan Dominique, 2021. "Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case," Dependence Modeling, De Gruyter, vol. 9(1), pages 43-61, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021004452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.