IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v227y2022ics0951832022003490.html
   My bibliography  Save this article

An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)

Author

Listed:
  • Nazarizadeh, Farzaneh
  • Alemtabriz, Akbar
  • Zandieh, Mostafa
  • Raad, Abbas

Abstract

Reliability plays an important role in the stable and safe operation of transportation systems. The rail system is one of the vital sectors of transportation that has affected the process of economic and social development. Therefore, accurate predicting of reliability is essential when designing, operating, and maintaining a rail system. This paper proposes an analytical model to estimate the dependent failure rate for the Iranian railway system. This model aims to accurate assessment and predict the reliability of the whole railway system by considering both common cause failure and interactive failure. This model developed by using of the two-variable Taylor expansion approach to estimate the dependent failure rate. The common cause coefficient and interactive coefficient have been estimated by the expert estimation method with the IEC62061 checklist and design structure matrix (DSM) respectively. The proposed model is implemented on the Iranian railway system and the results are analyzed. This paper verifies the model using case studies in the form of different scenarios and compared them with other models. The research results show an improvement in the accuracy of reliability prediction compared to other models.

Suggested Citation

  • Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:reensy:v:227:y:2022:i:c:s0951832022003490
    DOI: 10.1016/j.ress.2022.108725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Taotao & Droguett, Enrique López & Modarres, Mohammad, 2020. "A common cause failure model for components under age-related degradation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Cats, Oded & Hijner, Anne Mijntje, 2021. "Quantifying the cascading effects of passenger delays," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Eppinger, Steven D. & Browning, Tyson R., 2012. "Design Structure Matrix Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262017520, December.
    5. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin, 2019. "Reliability assessment of man-machine systems subject to mutually dependent machine degradation and human errors," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. Liu, Qiannan & Ma, Lin & Wang, Naichao & Chen, Ankang & Jiang, Qihang, 2022. "A condition-based maintenance model considering multiple maintenance effects on the dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Johnson, N. L. & Kotz, Samuel, 1975. "A vector multivariate hazard rate," Journal of Multivariate Analysis, Elsevier, vol. 5(1), pages 53-66, March.
    8. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    9. He, Jun, 2021. "An extended recursive decomposition algorithm for dynamic seismic reliability evaluation of lifeline networks with dependent component failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Wu, Bei & Ding, Dong, 2022. "A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Wang, Jia & Li, Zhigang & Bai, Guanghan & Zuo, Ming J., 2020. "An improved model for dependent competing risks considering continuous degradation and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Yera, Yoel G. & Lillo, Rosa E. & Nielsen, Bo F. & Ramírez-Cobo, Pepa & Ruggeri, Fabrizio, 2021. "A bivariate two-state Markov modulated Poisson process for failure modeling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    13. Sun, Yong & Ma, Lin & Mathew, Joseph & Zhang, Sheng, 2006. "An analytical model for interactive failures," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 495-504.
    14. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    16. Modarres, Mohammad & Zhou, Taotao & Massoud, Mahmoud, 2017. "Advances in multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 87-100.
    17. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    18. Wang, Qun & Jia, Guozhu & Jia, Yuning & Song, Wenyan, 2021. "A new approach for risk assessment of failure modes considering risk interaction and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Galbusera, Luca & Trucco, Paolo & Giannopoulos, Georgios, 2020. "Modeling interdependencies in multi-sectoral critical infrastructure systems: Evolving the DMCI approach," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Gan, Shuyuan & Hu, Hengheng & Coit, David W., 2023. "Maintenance optimization considering the mutual dependence of the environment and system with decreasing effects of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Pol, Johannes C. & Kindermann, Paulina & van der Krogt, Mark G. & van Bergeijk, Vera M. & Remmerswaal, Guido & Kanning, Willem & Jonkman, Sebastiaan N. & Kok, Matthijs, 2023. "The effect of interactions between failure mechanisms on the reliability of flood defenses," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Feng, Tingting & Li, Shichao & Guo, Liang & Gao, Hongli & Chen, Tao & Yu, Yaoxiang, 2023. "A degradation-shock dependent competing failure processes based method for remaining useful life prediction of drill bit considering time-shifting sudden failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Chen, Ying & Wang, Yanfang & Li, Shumin & Kang, Rui, 2023. "Hybrid uncertainty quantification of dependent competing failure process with chance theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Jafary, Bentolhoda & Mele, Andrew & Fiondella, Lance, 2020. "Component-based system reliability subject to positive and negative correlation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    9. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. Che, Haiyang & Zeng, Shengkui & Li, Kehui & Guo, Jianbin, 2022. "Reliability analysis of load-sharing man-machine systems subject to machine degradation, human errors, and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Wu, Bei & Wei, Xiaohua & Zhang, Yamei & Bai, Sijun, 2023. "Modeling dynamic environment effects on dependent failure processes with varying failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Wang, Jia & Han, Xu & Zhang, Yun-an & Bai, Guanghan, 2021. "Modeling the varying effects of shocks for a multi-stage degradation process," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Colangelo Antonio, 2005. "Multivariate hazard orderings of discrete random vectors," Economics and Quantitative Methods qf05010, Department of Economics, University of Insubria.
    14. Uwe Beyer & Oliver Ullrich, 2022. "Organizational Complexity as a Contributing Factor to Underperformance," Businesses, MDPI, vol. 2(1), pages 1-15, March.
    15. Wu, Shaomin & Wu, Di & Peng, Rui, 2023. "Considering greenhouse gas emissions in maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1135-1145.
    16. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    19. Morgan Dwyer & Bruce Cameron & Zoe Szajnfarber, 2015. "A Framework for Studying Cost Growth on Complex Acquisition Programs," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 568-583, November.
    20. Félicia Saïah & Diego Vega & Harwin de Vries & Joakim Kembro, 2023. "Process modularity, supply chain responsiveness, and moderators: The Médecins Sans Frontières response to the Covid‐19 pandemic," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1490-1511, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:227:y:2022:i:c:s0951832022003490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.