IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v168y2017icp105-115.html
   My bibliography  Save this article

Preventive maintenance of a single machine system working under piecewise constant operating condition

Author

Listed:
  • Hu, Jiawen
  • Jiang, Zuhua
  • Liao, Haitao

Abstract

Manufacturing machines usually work under piecewise constant operating condition (PCOC) and are subject to imperfect preventive maintenance (PM). In this paper, an extended imperfect maintenance (IM) model for a machine working under PCOC is developed by combining an age-based hybrid IM model and an accelerated failure time model (AFTM). Maximum likelihood method is provided for estimating the model parameters. A dynamic cost-effective PM policy based on a short-term production plan is proposed for a common situation where the production plan is updated dynamically and only the current operating condition (OC) is confirmed. A numerical example is conducted to demonstrate the use of the proposed policy in practice.

Suggested Citation

  • Hu, Jiawen & Jiang, Zuhua & Liao, Haitao, 2017. "Preventive maintenance of a single machine system working under piecewise constant operating condition," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 105-115.
  • Handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:105-115
    DOI: 10.1016/j.ress.2017.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016308444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    2. Zhou, Xiaojun & Lu, Zhiqiang & Xi, Lifeng, 2012. "Preventive maintenance optimization for a multi-component system under changing job shop schedule," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 14-20.
    3. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    4. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    5. Haitao Liao & Zhigang Tian, 2013. "A framework for predicting the remaining useful life of a single unit under time-varying operating conditions," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 964-980.
    6. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    7. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    8. Jiawen Hu & Zuhua Jiang & Hong Wang, 2016. "Preventive maintenance for a single-machine system under variable operational conditions," Journal of Risk and Reliability, , vol. 230(4), pages 391-404, August.
    9. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    10. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    11. Zhou, Xiaojun & Xi, Lifeng & Lee, Jay, 2007. "Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 530-534.
    12. X Jia & A H Christer, 2002. "A prototype cost model of functional check decisions in reliability-centred maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1380-1384, December.
    13. Alsyouf, Imad, 2007. "The role of maintenance in improving companies' productivity and profitability," International Journal of Production Economics, Elsevier, vol. 105(1), pages 70-78, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bensmain, Yassir & Dahane, Mohammed & Bennekrouf, Mohammed & Sari, Zaki, 2019. "Preventive remanufacturing planning of production equipment under operational and imperfect maintenance constraints: A hybrid genetic algorithm based approach," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 546-566.
    2. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    5. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," International Journal of Production Economics, Elsevier, vol. 264(C).
    6. Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
    7. Shi, Yue & Xiang, Yisha & Xiao, Hui & Xing, Liudong, 2021. "Joint optimization of budget allocation and maintenance planning of multi-facility transportation infrastructure systems," European Journal of Operational Research, Elsevier, vol. 288(2), pages 382-393.
    8. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Qinglai Dong & Lirong Cui & Hongda Gao, 2019. "A bivariate replacement policy for an imperfect repair system based on geometric processes," Journal of Risk and Reliability, , vol. 233(4), pages 670-681, August.
    10. Feng, Hanxin & Xi, Lifeng & Xiao, Lei & Xia, Tangbin & Pan, Ershun, 2018. "Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 218-229.
    11. Bożena Zwolińska & Jakub Wiercioch, 2022. "Selection of Maintenance Strategies for Machines in a Series-Parallel System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    2. Jiawen Hu & Zuhua Jiang & Hong Wang, 2016. "Preventive maintenance for a single-machine system under variable operational conditions," Journal of Risk and Reliability, , vol. 230(4), pages 391-404, August.
    3. Jiawen Hu & Zuhua Jiang & Hong Wang, 2017. "Joint Optimization of Production Plan and Preventive Maintenance Schedule by Stackelberg Game," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-28, August.
    4. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    5. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
    6. Francesco Corman & Sander Kraijema & Milinko Godjevac & Gabriel Lodewijks, 2017. "Optimizing preventive maintenance policy: A data-driven application for a light rail braking system," Journal of Risk and Reliability, , vol. 231(5), pages 534-545, October.
    7. Aghezzaf, El-Houssaine & Khatab, Abdelhakim & Tam, Phuoc Le, 2016. "Optimizing production and imperfect preventive maintenance planning׳s integration in failure-prone manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 190-198.
    8. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    9. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    10. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    11. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    12. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
    14. Ming-Yi You & Guang Meng, 2012. "A modularized framework for predictive maintenance scheduling," Journal of Risk and Reliability, , vol. 226(4), pages 380-391, August.
    15. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    16. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    17. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    18. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    19. Chaabane, K. & Khatab, A. & Diallo, C. & Aghezzaf, E.-H. & Venkatadri, U., 2020. "Integrated imperfect multimission selective maintenance and repairpersons assignment problem," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. Chien, Yu-Hung & Zhang, Zhe George & Yin, Xiaoling, 2019. "On optimal preventive-maintenance policy for generalized Polya process repairable products under free-repair warranty," European Journal of Operational Research, Elsevier, vol. 279(1), pages 68-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:105-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.