IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v221y2012i1p231-240.html
   My bibliography  Save this article

Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology

Author

Listed:
  • Xia, Tangbin
  • Xi, Lifeng
  • Zhou, Xiaojun
  • Lee, Jay

Abstract

Proper maintenance schedule is required to improve manufacturing systems’ profitability and productivity. A novel dynamic maintenance strategy is thus developed to incorporate both the single-machine optimization and the whole-system schedule for series–parallel system. Firstly, multiple attribute value theory and maintenance effects are considered in the single-machine optimization. A developed multi-attribute model (MAM) is used to determine the optimal maintenance intervals. Then, a series–parallel structure of the system is investigated in terms of the whole-system schedule. Maintenance time window (MTW) programming is presented to make a cost-effective system schedule by dynamically utilizing maintenance opportunities. The maintenance scheme achieved by using the proposed MAM–MTW methodology is demonstrated through a case study in a hydraulic steering factory. It is concluded that proper consideration of maintenance effects and time window leads to a significant cost reduction.

Suggested Citation

  • Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
  • Handle: RePEc:eee:ejores:v:221:y:2012:i:1:p:231-240
    DOI: 10.1016/j.ejor.2012.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712002366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Zhiyi & Chen, Yong & Zhang, An, 2011. "Parallel machines scheduling with machine maintenance for minsum criteria," European Journal of Operational Research, Elsevier, vol. 212(2), pages 287-292, July.
    2. Cheng, Ching-Hsue & Yang, Kuo-Lung & Hwang, Chia-Lung, 1999. "Evaluating attack helicopters by AHP based on linguistic variable weight," European Journal of Operational Research, Elsevier, vol. 116(2), pages 423-435, July.
    3. Carr, Matthew J. & Wang, Wenbin, 2011. "An approximate algorithm for prognostic modelling using condition monitoring information," European Journal of Operational Research, Elsevier, vol. 211(1), pages 90-96, May.
    4. Bana e Costa, Carlos A. & Carnero, María Carmen & Oliveira, Mónica Duarte, 2012. "A multi-criteria model for auditing a Predictive Maintenance Programme," European Journal of Operational Research, Elsevier, vol. 217(2), pages 381-393.
    5. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    6. Li, Lin & Ni, Jun, 2009. "Short-term decision support system for maintenance task prioritization," International Journal of Production Economics, Elsevier, vol. 121(1), pages 195-202, September.
    7. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    8. Ruiz-Castro, Juan Eloy & Li, Quan-Lin, 2011. "Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons," European Journal of Operational Research, Elsevier, vol. 211(1), pages 97-111, May.
    9. Zhou, Xiaojun & Xi, Lifeng & Lee, Jay, 2007. "Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 530-534.
    10. Sun, Ji-wen & Xi, Li-feng & Du, Shi-chang & Ju, Bo, 2008. "Reliability modeling and analysis of serial-parallel hybrid multi-operational manufacturing system considering dimensional quality, tool degradation and system configuration," International Journal of Production Economics, Elsevier, vol. 114(1), pages 149-164, July.
    11. Wildeman, R. E. & Dekker, R. & Smit, A. C. J. M., 1997. "A dynamic policy for grouping maintenance activities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 530-551, June.
    12. Zhu, Y. & Elsayed, E.A. & Liao, H. & Chan, L.Y., 2010. "Availability optimization of systems subject to competing risk," European Journal of Operational Research, Elsevier, vol. 202(3), pages 781-788, May.
    13. Bedford, Tim & Dewan, Isha & Meilijson, Isaac & Zitrou, Athena, 2011. "The signal model: A model for competing risks of opportunistic maintenance," European Journal of Operational Research, Elsevier, vol. 214(3), pages 665-673, November.
    14. Wang, Wenbin, 2012. "A stochastic model for joint spare parts inventory and planned maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 216(1), pages 127-139.
    15. Jin, Xiaoning & Li, Lin & Ni, Jun, 2009. "Option model for joint production and preventive maintenance system," International Journal of Production Economics, Elsevier, vol. 119(2), pages 347-353, June.
    16. Topal, Erkan & Ramazan, Salih, 2010. "A new MIP model for mine equipment scheduling by minimizing maintenance cost," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1065-1071, December.
    17. Li, Zhaojun & Liao, Haitao & Coit, David W., 2009. "A two-stage approach for multi-objective decision making with applications to system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1585-1592.
    18. M Alardhi & A W Labib, 2008. "Preventive maintenance scheduling of multi-cogeneration plants using integer programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 503-509, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaojun & Shi, Kailong, 2019. "Capacity failure rate based opportunistic maintenance modeling for series-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 46-53.
    2. Sobhani, A. & Wahab, M.I.M. & Neumann, W.P., 2015. "Investigating work-related ill health effects in optimizing the performance of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 241(3), pages 708-718.
    3. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Xia, Tangbin & Xi, Lifeng & Pan, Ershun & Ni, Jun, 2017. "Reconfiguration-oriented opportunistic maintenance policy for reconfigurable manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 87-98.
    6. Jiawen Hu & Zuhua Jiang & Hong Wang, 2017. "Joint Optimization of Production Plan and Preventive Maintenance Schedule by Stackelberg Game," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-28, August.
    7. Xia, Tangbin & Dong, Yifan & Xiao, Lei & Du, Shichang & Pan, Ershun & Xi, Lifeng, 2018. "Recent advances in prognostics and health management for advanced manufacturing paradigms," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 255-268.
    8. Jiawen Hu & Zuhua Jiang & Hong Wang, 2016. "Preventive maintenance for a single-machine system under variable operational conditions," Journal of Risk and Reliability, , vol. 230(4), pages 391-404, August.
    9. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    10. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe & Bouvard, Keomany & Brissaud, Florent, 2013. "Dynamic grouping maintenance with time limited opportunities," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 51-59.
    11. Mena, R. & Viveros, P. & Zio, E. & Campos, S., 2021. "An optimization framework for opportunistic planning of preventive maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Si, Guojin & Xia, Tangbin & Zhu, Ying & Du, Shichang & Xi, Lifeng, 2019. "Triple-level opportunistic maintenance policy for leasehold service network of multi-location production lines," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    13. Pablo Viveros & Rodrigo Mena & Enrico Zio & Leonardo Miqueles & Fredy Kristjanpoller, 2023. "Integrated planning framework for preventive maintenance grouping: A case study for a conveyor system in the Chilean mining industry," Journal of Risk and Reliability, , vol. 237(5), pages 1011-1028, October.
    14. Hu, Jiawen & Jiang, Zuhua & Liao, Haitao, 2017. "Preventive maintenance of a single machine system working under piecewise constant operating condition," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 105-115.
    15. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint," Omega, Elsevier, vol. 61(C), pages 110-126.
    17. Li, Yaping & Xia, Tangbin & Chen, Zhen & Pan, Ershun, 2023. "Multiple degradation-driven preventive maintenance policy for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    20. Chao Luo & Hiroyuki Okamura & Tadashi Dohi, 2016. "Optimal planning for open source software updates," Journal of Risk and Reliability, , vol. 230(1), pages 44-53, February.
    21. Tangbin Xia & Lifeng Xi, 2019. "Manufacturing paradigm-oriented PHM methodologies for cyber-physical systems," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1659-1672, April.
    22. Feng, Hanxin & Xi, Lifeng & Xiao, Lei & Xia, Tangbin & Pan, Ershun, 2018. "Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 218-229.
    23. Sheu, Shey-Huei & Tsai, Hsin-Nan & Wang, Fu-Kwun & Zhang, Zhe George, 2015. "An extended optimal replacement model for a deteriorating system with inspections," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 33-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    2. Xia, Tangbin & Xi, Lifeng & Pan, Ershun & Ni, Jun, 2017. "Reconfiguration-oriented opportunistic maintenance policy for reconfigurable manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 87-98.
    3. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Francesco Corman & Sander Kraijema & Milinko Godjevac & Gabriel Lodewijks, 2017. "Optimizing preventive maintenance policy: A data-driven application for a light rail braking system," Journal of Risk and Reliability, , vol. 231(5), pages 534-545, October.
    6. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Aghezzaf, El-Houssaine & Khatab, Abdelhakim & Tam, Phuoc Le, 2016. "Optimizing production and imperfect preventive maintenance planning׳s integration in failure-prone manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 190-198.
    8. Pascual, R. & Meruane, V. & Rey, P.A., 2008. "On the effect of downtime costs and budget constraint on preventive and replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 144-151.
    9. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    10. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    11. Markus Bohlin & Mathias Wärja, 2015. "Maintenance optimization with duration-dependent costs," Annals of Operations Research, Springer, vol. 224(1), pages 1-23, January.
    12. Zhong, Chongquan & Jin, Haibo, 2014. "A novel optimal preventive maintenance policy for a cold standby system based on semi-Markov theory," European Journal of Operational Research, Elsevier, vol. 232(2), pages 405-411.
    13. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    14. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    15. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    16. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    17. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    18. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    19. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    20. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:221:y:2012:i:1:p:231-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.