IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v165y2017icp345-354.html
   My bibliography  Save this article

Modelling improvised explosive device attacks in the West – Assessing the hazard

Author

Listed:
  • Grant, Matthew J.
  • Stewart, Mark G.

Abstract

Improvised Explosive Devices (IEDs) continue to be a terrorist weapon of choice. With increasing pressures on the economies of Western nations, spending on counter-terrorism is subject to greater scrutiny. Homeland security agencies are no longer exempt from government fiscal due diligence, needing to justify how their spending achieves best value-for-money. Probabilistic Risk Assessment (PRA) is a valuable tool that can assist in this endeavour. This paper introduces a PRA model that characterises IED attacks in Western nations, and can be used to assess the risk reduction associated with IED attack countermeasures. When using the model with the START open-source terrorism database we identified that current IED attack countermeasures provide a risk reduction of at approximately 22%, and that terrorists using IEDs in Western nations cannot generally be considered adaptive, with the operational effectiveness of terrorists being approximately 7%.

Suggested Citation

  • Grant, Matthew J. & Stewart, Mark G., 2017. "Modelling improvised explosive device attacks in the West – Assessing the hazard," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 345-354.
  • Handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:345-354
    DOI: 10.1016/j.ress.2017.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016302745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    2. Patrick T. Brandt & Todd Sandler, 2010. "What Do Transnational Terrorists Target? Has It Changed? Are We Safer?," Journal of Conflict Resolution, Peace Science Society (International), vol. 54(2), pages 214-236, April.
    3. Hegghammer, Thomas, 2013. "Should I Stay or Should I Go? Explaining Variation in Western Jihadists' Choice between Domestic and Foreign Fighting," American Political Science Review, Cambridge University Press, vol. 107(1), pages 1-15, February.
    4. Kjell Hausken & Fei He, 2016. "On the Effectiveness of Security Countermeasures for Critical Infrastructures," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 711-726, April.
    5. John Mueller & Mark G. Stewart, 2014. "Evaluating Counterterrorism Spending," Journal of Economic Perspectives, American Economic Association, vol. 28(3), pages 237-248, Summer.
    6. Mark G. Stewart & John Mueller, 2013. "Aviation Security, Risk Assessment, and Risk Aversion for Public Decisionmaking," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 32(3), pages 615-633, June.
    7. Jun Zhuang & Vicki Bier, 2011. "Secrecy And Deception At Equilibrium, With Applications To Anti-Terrorism Resource Allocation," Defence and Peace Economics, Taylor & Francis Journals, vol. 22(1), pages 43-61.
    8. Kjell Hausken, 2018. "A cost–benefit analysis of terrorist attacks," Defence and Peace Economics, Taylor & Francis Journals, vol. 29(2), pages 111-129, February.
    9. Stewart, Mark G. & Mueller, John, 2014. "Cost-benefit analysis of airport security: Are airports too safe?," Journal of Air Transport Management, Elsevier, vol. 35(C), pages 19-28.
    10. Kjell Hausken, 2002. "Probabilistic Risk Analysis and Game Theory," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 17-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thöns, Sebastian & Stewart, Mark G., 2019. "On decision optimality of terrorism risk mitigation measures for iconic bridges," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 574-583.
    2. Stewart, Mark G. & Netherton, Michael D., 2019. "A probabilistic risk-acceptance model for assessing blast and fragmentation safety hazards," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    2. Adam Behrendt & Vineet M. Payyappalli & Jun Zhuang, 2019. "Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1358-1381, June.
    3. Musegaas, Marieke & Schlicher, Loe & Blok, Herman, 2022. "Stackelberg production-protection games: Defending crop production against intentional attacks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 102-119.
    4. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    5. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    6. Abel Brodeur, 2018. "The Effect of Terrorism on Employment and Consumer Sentiment: Evidence from Successful and Failed Terror Attacks," American Economic Journal: Applied Economics, American Economic Association, vol. 10(4), pages 246-282, October.
    7. Zhiheng Xu & Jun Zhuang, 2019. "A Study on a Sequential One‐Defender‐N‐Attacker Game," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1414-1432, June.
    8. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    10. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.
    11. Halkos, George & Managi, Shunsuke & Zisiadou, Argyro, 2017. "Analyzing the determinants of terrorist attacks and their market reactions," Economic Analysis and Policy, Elsevier, vol. 54(C), pages 57-73.
    12. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    13. Zhang, Jing & Zhuang, Jun & Jose, Victor Richmond R., 2018. "The role of risk preferences in a multi-target defender-attacker resource allocation game," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 95-104.
    14. Li, Qing & Li, Mingchu & Zhang, Runfa & Gan, Jianyuan, 2021. "A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Jesus Rios & David Rios Insua, 2012. "Adversarial Risk Analysis for Counterterrorism Modeling," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 894-915, May.
    16. Kjell Hausken & Fei He, 2016. "On the Effectiveness of Security Countermeasures for Critical Infrastructures," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 711-726, April.
    17. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    18. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    19. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    20. Halkos, George & Zisiadou, Argyro, 2016. "Exploring the effect of terrorist attacks on markets," MPRA Paper 71877, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:345-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.