IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v47y2006i3p209-221.html
   My bibliography  Save this article

A review on the viable technology for construction waste recycling

Author

Listed:
  • Tam, Vivian W.Y.
  • Tam, C.M.

Abstract

Environmental problems have been considered as a serious situation in the construction. Waste management is pressing harder with the alarming signal warning the industry. Reuse, recycling and reduce the wastes consider as the only methods to recover those waste generated; however, the implementations still have much room for improvement. This paper reviews the technology on construction waste recycling and their viability. Ten material recycling practices are studied, including: (i) asphalt, (ii) brick, (iii) concrete, (iv) ferrous metal, (v) glass, (vi) masonry, (vii) non-ferrous metal, (viii) paper and cardboard, (ix) plastic and (x) timber. The viable technology of the construction material recycling should be provided an easy reference for future applications.

Suggested Citation

  • Tam, Vivian W.Y. & Tam, C.M., 2006. "A review on the viable technology for construction waste recycling," Resources, Conservation & Recycling, Elsevier, vol. 47(3), pages 209-221.
  • Handle: RePEc:eee:recore:v:47:y:2006:i:3:p:209-221
    DOI: 10.1016/j.resconrec.2005.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344905001746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2005.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chun-Li Peng & Domenic Scorpio & Charles Kibert, 1997. "Strategies for successful construction and demolition waste recycling operations," Construction Management and Economics, Taylor & Francis Journals, vol. 15(1), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulmalek K. Badraddin & Rahimi A. Rahman & Saud Almutairi & Muneera Esa, 2021. "Main Challenges to Concrete Recycling in Practice," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    2. Hao Liu & Kaizhi Liu & Yiqi Xiao & Peng Zhang & Meixia Zhang & Youzeng Zhu & Kaixin Liu & Tianshuo Xu & Rui Huang, 2022. "Properties of Lightweight Controlled Low-Strength Materials Using Construction Waste and EPS for Oil and Gas Pipelines," Energies, MDPI, vol. 15(12), pages 1-11, June.
    3. Junwu Wang & Yinghui Song & Wei Wang & Suikuan Wang & Feng Guo & Jiequn Lu, 2022. "Marine Construction Waste Recycling Mechanism Considering Public Participation and Carbon Trading: A Study on Dynamic Modeling and Simulation Based on Sustainability Policy," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    4. Kshetrimayum Dideshwor Singh & Xiduo Yi & Lenin S. Shagolsem & Jayatek Toijam, 2024. "Assessing Green Features of “Phumdi” as a Sustainable Material: A Comparative Analysis with Bamboo, Wood, Metal, and Plastic," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    5. Dimitra Papadaki & Dimitrios A. Nikolaou & Margarita N. Assimakopoulos, 2022. "Circular Environmental Impact of Recycled Building Materials and Residential Renewable Energy," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    6. Husnain Haider & Sulaiman Yousef AlMarshod & Saleem S. AlSaleem & Ahmed AbdelMonteleb M. Ali & Majed Alinizzi & Mohammad T. Alresheedi & Md. Shafiquzzaman, 2022. "Life Cycle Assessment of Construction and Demolition Waste Management in Riyadh, Saudi Arabia," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    7. Héctor Hernández & Felipe Ossio & Michael Silva, 2023. "Assessment of Sustainability and Efficiency Metrics in Modern Methods of Construction: A Case Study Using a Life Cycle Assessment Approach," Sustainability, MDPI, vol. 15(7), pages 1-25, April.
    8. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    9. Abdulmalek K. Badraddin & Afiqah R. Radzi & Saud Almutairi & Rahimi A. Rahman, 2022. "Critical Success Factors for Concrete Recycling in Construction Projects," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    10. Ting Wang & Kaiyi Li & Defu Liu & Yang Yang & Dong Wu, 2022. "Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai," IJERPH, MDPI, vol. 19(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry," International Journal of Production Economics, Elsevier, vol. 260(C).
    2. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    3. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    4. Begum, Rawshan Ara & Siwar, Chamhuri & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid, 2006. "A benefit–cost analysis on the economic feasibility of construction waste minimisation: The case of Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 48(1), pages 86-98.
    5. Lu, Weisheng & Webster, Chris & Chen, Ke & Zhang, Xiaoling & Chen, Xi, 2017. "Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 587-595.
    6. Animesh Ghosh & Prabha Bhola & Uthayasankar Sivarajah, 2022. "Emerging Associates of the Circular Economy: Analysing Interactions and Trends by a Mixed Methods Systematic Review," Sustainability, MDPI, vol. 14(16), pages 1-41, August.
    7. Haoxuan Zheng & Xingwei Li & Xiaowen Zhu & Yicheng Huang & Zhili Liu & Yuxin Liu & Jiaxin Liu & Xiangye Li & Yuejia Li & Chunhui Li, 2022. "Impact of Recycler Information Sharing on Supply Chain Performance of Construction and Demolition Waste Resource Utilization," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    8. Cristian Silviu BANACU & Vasile ZECHERU & Bianca Georgiana OLARU, 2016. "Project Management In Organic Waste Recycling," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 10(1), pages 101-106, November.
    9. Yuan, H.P. & Shen, L.Y. & Hao, Jane J.L. & Lu, W.S., 2011. "A model for cost–benefit analysis of construction and demolition waste management throughout the waste chain," Resources, Conservation & Recycling, Elsevier, vol. 55(6), pages 604-612.
    10. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    11. Lachimpadi, Suresh Kumar & Pereira, Joy Jacqueline & Taha, Mohd Raihan & Mokhtar, Mazlin, 2012. "Construction waste minimisation comparing conventional and precast construction (Mixed System and IBS) methods in high-rise buildings: A Malaysia case study," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 96-103.
    12. Helen Lingard & Guinevere Gilbert & Peter Graham, 2001. "Improving solid waste reduction and recycling performance using goal setting and feedback," Construction Management and Economics, Taylor & Francis Journals, vol. 19(8), pages 809-817.
    13. Zhen Liu & Tzuhui Wu & Fenghong Wang & Mohamed Osmani & Peter Demian, 2022. "Blockchain Enhanced Construction Waste Information Management: A Conceptual Framework," Sustainability, MDPI, vol. 14(19), pages 1-35, September.
    14. Tong Huang & Shicong Kou & Deyou Liu & Dawang Li & Feng Xing, 2022. "Evaluation of the Techno-Economic Feasibility for Excavated Soil Recycling in Shenzhen, China," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
    15. Vivian Wing-Yan Tam & Weisheng Lu, 2016. "Construction Waste Management Profiles, Practices, and Performance: A Cross-Jurisdictional Analysis in Four Countries," Sustainability, MDPI, vol. 8(2), pages 1-16, February.
    16. Zezhou Wu & Kaijie Yang & Xiaofan Lai & Maxwell Fordjour Antwi-Afari, 2020. "A Scientometric Review of System Dynamics Applications in Construction Management Research," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    17. Ajayi, Saheed O. & Oyedele, Lukumon O. & Bilal, Muhammad & Akinade, Olugbenga O. & Alaka, Hafiz A. & Owolabi, Hakeem A. & Kadiri, Kabir O., 2015. "Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 101-112.
    18. Salman Shooshtarian & Tayyab Maqsood & Malik Khalfan & Rebecca J. Yang & Peter Wong, 2020. "Landfill Levy Imposition on Construction and Demolition Waste: Australian Stakeholders’ Perceptions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    19. Reza Esmaeilifar & Mohammad Iranmanesh & Mohd Wira Mohd Shafiei & Sunghyup Sean Hyun, 2020. "Effects of low carbon waste practices on job satisfaction of site managers through job stress," Review of Managerial Science, Springer, vol. 14(1), pages 115-136, February.
    20. Mircea Raul Tudorica & Mihaela Teodora Toadere & Corneliu Ioan Bob, 2023. "The Sustainability Study Done for a Consolidation Work on a Historical Building," Sustainability, MDPI, vol. 15(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:47:y:2006:i:3:p:209-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.