IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip1p587-595.html
   My bibliography  Save this article

Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality

Author

Listed:
  • Lu, Weisheng
  • Webster, Chris
  • Chen, Ke
  • Zhang, Xiaoling
  • Chen, Xi

Abstract

There is a lively debate on the application of Building Information Modelling (BIM) to construction waste management (CWM). BIM can be utilized as a less expensive, virtual, and computational environment to enable designers to ponder different design options, or contractors to evaluate different construction schemes, both with a view to minimizing construction waste generation. However, existing debate on this topic too frequently treats BIM as a cure-all silver bullet; without some major hurdles being adequately addressed, the applications of BIM will remain rhetorical. This paper aims to demystify BIM's computational application to CWM. Based on a critical literature review, a prototypical framework of a computational BIM for CWM is delineated, within which the two key prerequisites of ‘information readiness’ and ‘computational algorithms’ are highlighted. Then, the paper details the required information and how it can be organized in a standalone database or encapsulated in existing BIM for CWM. Learning from the historical development of data infrastructure in the field of BIM-based cost management, the process to develop the required information is likely to be tortuous but is unavoidable. The paper further explores computational BIM algorithms that can manipulate the information to facilitate decision-making for CWM. Finally, the operation of computational BIM is elaborated by relating it to various prevailing procurement models within which BIM applications are contextualized. Although the framework reported here has been substantially developed for experimental application, , it is not to be taken as an immediately applicable solution but rather as an illustration of the kind of platform on which future development of computational BIM for CWM can proceed in a more efficient and effective fashion.

Suggested Citation

  • Lu, Weisheng & Webster, Chris & Chen, Ke & Zhang, Xiaoling & Chen, Xi, 2017. "Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 587-595.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:587-595
    DOI: 10.1016/j.rser.2016.10.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116306797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heng Li & Weisheng Lu & Ting Huang, 2009. "Rethinking project management and exploring virtual design and construction as a potential solution," Construction Management and Economics, Taylor & Francis Journals, vol. 27(4), pages 363-371.
    2. Yuan, Hongping & Lu, Weisheng & Jianli Hao, Jane, 2013. "The evolution of construction waste sorting on-site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 483-490.
    3. Chun-Li Peng & Domenic Scorpio & Charles Kibert, 1997. "Strategies for successful construction and demolition waste recycling operations," Construction Management and Economics, Taylor & Francis Journals, vol. 15(1), pages 49-58.
    4. M. M. M. Teo & M. Loosemore, 2001. "A theory of waste behaviour in the construction industry," Construction Management and Economics, Taylor & Francis Journals, vol. 19(7), pages 741-751.
    5. Chi Sun Poon & Ann Tit Wan Yu & Sze Wai Wong & Esther Cheung, 2004. "Management of construction waste in public housing projects in Hong Kong," Construction Management and Economics, Taylor & Francis Journals, vol. 22(7), pages 675-689.
    6. Baldwin, Andrew & Poon, Chi-Sun & Shen, Li-Yin & Austin, Simon & Wong, Irene, 2009. "Designing out waste in high-rise residential buildings: Analysis of precasting methods and traditional construction," Renewable Energy, Elsevier, vol. 34(9), pages 2067-2073.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazen M. Omer & Rahimi A. Rahman & Saud Almutairi, 2022. "Strategies for Enhancing Construction Waste Recycling: A Usability Analysis," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    2. Dongchen Han & Mohsen Kalantari & Abbas Rajabifard, 2021. "Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    3. Bahareh Nikmehr & M. Reza Hosseini & Jun Wang & Nicholas Chileshe & Raufdeen Rameezdeen, 2021. "BIM-Based Tools for Managing Construction and Demolition Waste (CDW): A Scoping Review," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    4. Charef, Rabia & Ganjian, Eshmaiel & Emmitt, Stephen, 2021. "Socio-economic and environmental barriers for a holistic asset lifecycle approach to achieve circular economy: A pattern-matching method," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    5. Zezhou Wu & Mingyang Jiang & Heng Li & Xiaochun Luo & Xiaoying Li, 2021. "Investigating the Critical Factors of Professionals’ BIM Adoption Behavior Based on the Theory of Planned Behavior," IJERPH, MDPI, vol. 18(6), pages 1-18, March.
    6. Laura Pellegrini & Mirko Locatelli & Silvia Meschini & Giulia Pattini & Elena Seghezzi & Lavinia Chiara Tagliabue & Giuseppe Martino Di Giuda, 2021. "Information Modelling Management and Green Public Procurement for Waste Management and Environmental Renovation of Brownfields," Sustainability, MDPI, vol. 13(15), pages 1-31, August.
    7. Arghavan Akbarieh & Laddu Bhagya Jayasinghe & Danièle Waldmann & Felix Norman Teferle, 2020. "BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review," Sustainability, MDPI, vol. 12(7), pages 1-29, March.
    8. Zhikun Ding & Wenyan Gong & Shenghan Li & Zezhou Wu, 2018. "System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management," Sustainability, MDPI, vol. 10(7), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    2. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    3. Vivian W. Y. Tam & Khoa N. Le & J. Y. Wang & I. M. Chethana S. Illankoon, 2018. "Practitioners Recycling Attitude and Behaviour in the Australian Construction Industry," Sustainability, MDPI, vol. 10(4), pages 1-23, April.
    4. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    5. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    6. Ajayi, Saheed O. & Oyedele, Lukumon O. & Bilal, Muhammad & Akinade, Olugbenga O. & Alaka, Hafiz A. & Owolabi, Hakeem A. & Kadiri, Kabir O., 2015. "Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 101-112.
    7. Li, Mei & Yang, Jay, 2014. "Critical factors for waste management in office building retrofit projects in Australia," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 85-98.
    8. Li, Zhengdao & Shen, Geoffrey Qiping & Alshawi, Mustafa, 2014. "Measuring the impact of prefabrication on construction waste reduction: An empirical study in China," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 27-39.
    9. Lu, Weisheng & Yuan, Hongping, 2013. "Investigating waste reduction potential in the upstream processes of offshore prefabrication construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 804-811.
    10. Lu, Weisheng & Chen, Xi & Peng, Yi & Shen, Liyin, 2015. "Benchmarking construction waste management performance using big data," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 49-58.
    11. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry," International Journal of Production Economics, Elsevier, vol. 260(C).
    12. Ayodeji Emmanuel Oke & Ahmed Farouk Kineber & Mohamed Elseknidy & Fakunle Samuel Kayode, 2023. "Radio frequency identification implementation model for sustainable development: A structural equation modeling approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1824-1844, June.
    13. Kien Ton Tong & Ngoc Tan Nguyen & Giang Hoang Nguyen & Tomonori Ishigaki & Ken Kawamoto, 2022. "Management Assessment and Future Projections of Construction and Demolition Waste Generation in Hai Phong City, Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    14. Serenari, Christopher & Bosak, Keith & Attarian, Aram, 2013. "Cross-cultural efficacy of American low-impact programs: A comparison between Garhwal guide beliefs on environmental behavior and American outdoor travel norms," Tourism Management, Elsevier, vol. 34(C), pages 50-60.
    15. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    16. Farrelly, Trisia & Tucker, Corrina, 2014. "Action research and residential waste minimisation in Palmerston North, New Zealand," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 11-26.
    17. Heni Fitriani & Saheed Ajayi & Sunkuk Kim, 2022. "Analysis of the Underlying Causes of Waste Generation in Indonesia’s Construction Industry," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    18. Vivian Tam & C. M. Tam & L. Y. Shen & S. X. Zeng & C. M. Ho, 2006. "Environmental performance assessment: perceptions of project managers on the relationship between operational and environmental performance indicators," Construction Management and Economics, Taylor & Francis Journals, vol. 24(3), pages 287-299.
    19. Gi-Wook Cha & Young-Chan Kim & Hyeun Jun Moon & Won-Hwa Hong, 2017. "The Effects of Data Collection Method and Monitoring of Workers’ Behavior on the Generation of Demolition Waste," IJERPH, MDPI, vol. 14(10), pages 1-14, October.
    20. Michael Pitt & Andrew Smith, 2003. "An assessment of waste management efficiency at BAA airports," Construction Management and Economics, Taylor & Francis Journals, vol. 21(4), pages 421-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:587-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.