IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v183y2017ipbp382-393.html
   My bibliography  Save this article

Closed loop supply chain networks: Designs for energy and time value efficiency

Author

Listed:
  • Kadambala, Dinesh K.
  • Subramanian, Nachiappan
  • Tiwari, Manoj K.
  • Abdulrahman, Muhammad
  • Liu, Chang

Abstract

Product recovery has become a viable option for many industries to realize economic gains while protecting the environment. However, insufficient investment and inefficient supply chains have hampered the viability of reuse and/or recycling because of the extended time intervals between the recycling process of recovery and reuse. Manufacturers and distributors face the challenge and necessity to reduce these process delays in order to recover the maximum value of the returned products through an effective, responsive closed loop supply chain (CLSC). This paper quantitatively measures the effective responsiveness of the CLSC model in terms of time and energy efficiency. The proposed multi-objective mixed integer linear programming (MOMILP) model evaluates delay parameters with decision variables that maximize profit, optimize customer surplus and minimize energy use. The model suggests decision makers may achieve an optimal tradeoff among differing objectives in a multiple-objective CLSC scenario. We employed a multi-objective particle swarm optimization (MOPSO) approach to solve the proposed MOMILP model and compared our approach with the Non-Dominated Sorted Genetic Algorithm (NSGA-II) for optimal solution. Results of the comparative evolutionary approaches shows that MOPSO outperforms NSGA-II in almost all cases in achieving the best trade-off solutions. Sensitivity analysis carried out to test the robustness of the model confirms that substantially less cost is feasible through the reduction of return process delays. This paper aims to formulate a multi-objective CLSC problem based on a network-flow model measuring the time value to recover maximum assets lost due to delay at different stages of the recycle process. We also developed a particle swarm approach for a multi-objective CLSC. Our study also offers valuable insights for designers wishing to create a product flow network with an optimal capacity level in case of prioritized objectives scenarios.

Suggested Citation

  • Kadambala, Dinesh K. & Subramanian, Nachiappan & Tiwari, Manoj K. & Abdulrahman, Muhammad & Liu, Chang, 2017. "Closed loop supply chain networks: Designs for energy and time value efficiency," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 382-393.
  • Handle: RePEc:eee:proeco:v:183:y:2017:i:pb:p:382-393
    DOI: 10.1016/j.ijpe.2016.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316000402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    2. Choudhary, Alok & Sarkar, Sagar & Settur, Srikar & Tiwari, M.K., 2015. "A carbon market sensitive optimization model for integrated forward–reverse logistics," International Journal of Production Economics, Elsevier, vol. 164(C), pages 433-444.
    3. V. Daniel R. Guide & Luc Muyldermans & Luk N. Van Wassenhove, 2005. "Hewlett-Packard Company Unlocks the Value Potential from Time-Sensitive Returns," Interfaces, INFORMS, vol. 35(4), pages 281-293, August.
    4. Qiang, Qiang & Ke, Ke & Anderson, Trisha & Dong, June, 2013. "The closed-loop supply chain network with competition, distribution channel investment, and uncertainties," Omega, Elsevier, vol. 41(2), pages 186-194.
    5. Kusumastuti, Ratih Dyah & Piplani, Rajesh & Hian Lim, Geok, 2008. "Redesigning closed-loop service network at a computer manufacturer: A case study," International Journal of Production Economics, Elsevier, vol. 111(2), pages 244-260, February.
    6. V. Daniel R. Guide , Jr. & Gilvan C. Souza & Luk N. Van Wassenhove & Joseph D. Blackburn, 2006. "Time Value of Commercial Product Returns," Management Science, INFORMS, vol. 52(8), pages 1200-1214, August.
    7. Haim Mendelson & Ravindran R. Pillai, 1999. "Industry Clockspeed: Measurement and Operational Implications," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 1-20.
    8. Das, Kanchan & Rao Posinasetti, Nageswara, 2015. "Addressing environmental concerns in closed loop supply chain design and planning," International Journal of Production Economics, Elsevier, vol. 163(C), pages 34-47.
    9. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    10. Gilvan C. Souza, 2012. "Product Disposition Decisions on Closed-Loop Supply Chains," International Series in Operations Research & Management Science, in: Tonya Boone & Vaidyanathan Jayaraman & Ram Ganeshan (ed.), Sustainable Supply Chains, edition 127, chapter 0, pages 149-164, Springer.
    11. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    12. Mitra, Subrata, 2007. "Revenue management for remanufactured products," Omega, Elsevier, vol. 35(5), pages 553-562, October.
    13. Chaabane, A. & Ramudhin, A. & Paquet, M., 2012. "Design of sustainable supply chains under the emission trading scheme," International Journal of Production Economics, Elsevier, vol. 135(1), pages 37-49.
    14. Paksoy, Turan & Bektas, Tolga & Özceylan, Eren, 2011. "Operational and environmental performance measures in a multi-product closed-loop supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 532-546, July.
    15. Ye, Fei & Zhao, Xiande & Prahinski, Carol & Li, Yina, 2013. "The impact of institutional pressures, top managers' posture and reverse logistics on performance—Evidence from China," International Journal of Production Economics, Elsevier, vol. 143(1), pages 132-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung Hoon Chung & Robert D. Weaver & Hyun Woo Jeon, 2020. "Sustainable Management of Remanufacturing in Dynamic Supply Chains," Networks and Spatial Economics, Springer, vol. 20(3), pages 703-731, September.
    2. Xiaodong Lv & Angfei Li & Shuhong Wang & Tao Zhang, 2023. "Building a demand-oriented optimal model for the recycling of used electronic products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5949-5971, July.
    3. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    4. Chen, Wenyi & Kucukyazici, Beste & Saenz, Maria Jesus, 2019. "On the joint dynamics of the economic and environmental performances for collective take-back systems," International Journal of Production Economics, Elsevier, vol. 218(C), pages 228-244.
    5. Beatrice Marchi & Simone Zanoni, 2017. "Supply Chain Management for Improved Energy Efficiency: Review and Opportunities," Energies, MDPI, vol. 10(10), pages 1-29, October.
    6. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    7. Sadjady Naeeni, Hannan & Sabbaghi, Navid, 2022. "Sustainable supply chain network design: A case of the glass manufacturer in Asia," International Journal of Production Economics, Elsevier, vol. 248(C).
    8. Majid Eskandarpour & Pierre Dejax & Olivier Péton, 2019. "Multi-Directional Local Search for Sustainable Supply Chain Network Design," Post-Print hal-02407741, HAL.
    9. Joakim Haraldsson & Maria T. Johansson, 2019. "Energy Efficiency in the Supply Chains of the Aluminium Industry: The Cases of Five Products Made in Sweden," Energies, MDPI, vol. 12(2), pages 1-25, January.
    10. Letmathe, Peter & Wagner, Sandra, 2018. "“Messy” marginal costs: Internal pricing of environmental aspects on the firm level," International Journal of Production Economics, Elsevier, vol. 201(C), pages 41-52.
    11. Qiao, Haike & Su, Qin, 2021. "Distribution channel and licensing strategy choice considering consumer online reviews in a closed-loop supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    12. Manju Saroha & Dixit Garg & Sunil Luthra, 2022. "Analyzing the circular supply chain management performance measurement framework: the modified balanced scorecard technique," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 951-960, June.
    13. Muyldermans, L. & Van Wassenhove, L.N. & Guide, V.D.R., 2019. "Managing high-end ex-demonstration product returns," European Journal of Operational Research, Elsevier, vol. 277(1), pages 195-214.
    14. Huang, Yanting & Wang, Zongjun, 2017. "Information sharing in a closed-loop supply chain with technology licensing," International Journal of Production Economics, Elsevier, vol. 191(C), pages 113-127.
    15. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    16. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    2. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    3. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.
    4. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    5. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    6. Gaur, Jighyasu & Amini, Mehdi & Rao, A.K., 2017. "Closed-loop supply chain configuration for new and reconditioned products: An integrated optimization model," Omega, Elsevier, vol. 66(PB), pages 212-223.
    7. Pokharel, Shaligram & Mutha, Akshay, 2009. "Perspectives in reverse logistics: A review," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 175-182.
    8. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    9. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    10. Krikke, Harold & Hofenk, Dianne & Wang, Yacan, 2013. "Revealing an invisible giant: A comprehensive survey into return practices within original (closed-loop) supply chains," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 239-250.
    11. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    12. Difrancesco, Rita Maria & Huchzermeier, Arnd & Schröder, David, 2018. "Optimizing the return window for online fashion retailers with closed-loop refurbishment," Omega, Elsevier, vol. 78(C), pages 205-221.
    13. Ruiz-Benítez, Rocío & Ketzenberg, Michael & van der Laan, Erwin A., 2014. "Managing consumer returns in high clockspeed industries," Omega, Elsevier, vol. 43(C), pages 54-63.
    14. Yang, Hui & Chen, Jing & Chen, Xu & Chen, Bintong, 2017. "The impact of customer returns in a supply chain with a common retailer," European Journal of Operational Research, Elsevier, vol. 256(1), pages 139-150.
    15. Niknejad, A. & Petrovic, D., 2014. "Optimisation of integrated reverse logistics networks with different product recovery routes," European Journal of Operational Research, Elsevier, vol. 238(1), pages 143-154.
    16. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    17. Seles, Bruno Michel Roman Pais & de Sousa Jabbour, Ana Beatriz Lopes & Jabbour, Charbel José Chiappetta & Dangelico, Rosa Maria, 2016. "The green bullwhip effect, the diffusion of green supply chain practices, and institutional pressures: Evidence from the automotive sector," International Journal of Production Economics, Elsevier, vol. 182(C), pages 342-355.
    18. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    19. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    20. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:183:y:2017:i:pb:p:382-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.