IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v616y2023ics0378437123001784.html
   My bibliography  Save this article

Simultaneous improvement of multiple transportation performances on link-coupled networks by global dynamic routing

Author

Listed:
  • Yang, Chao
  • Chen, Zhuoran
  • Qian, Jianghai
  • Han, Dingding
  • Zhao, Kaidi

Abstract

The interconnected networks are facing with critical congestion issue due to the rapid growth of the traffic and the information on the links with limited capacity. We show that the traditional routing strategies are generally confronted with a tradeoff between the network capacity and the link usage when applying to the link-coupled network. To take a step to the issue, we propose a global dynamic routing (GDR) strategy that can simultaneously achieve multiple improvement of the transport performance with acceptable computational complexity at the cost of the average arrival time. Further analysis indicates the improvement is related to the nontrivial load distribution resulting from GDR. More surprisingly, the simulation experiments suggest our strategy GDR can suppress the occurrence of Braess-like paradox, which is a long-standing problem in transportation.

Suggested Citation

  • Yang, Chao & Chen, Zhuoran & Qian, Jianghai & Han, Dingding & Zhao, Kaidi, 2023. "Simultaneous improvement of multiple transportation performances on link-coupled networks by global dynamic routing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
  • Handle: RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001784
    DOI: 10.1016/j.physa.2023.128623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001784
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511761942 is not listed on IDEAS
    2. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    3. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
    4. Yu Bai & Ding-Ding Han & Ming Tang, 2019. "Multi-priority routing algorithm based on source node importance in complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-13, July.
    5. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    6. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    7. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    2. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    3. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    4. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    5. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    6. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    7. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    8. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    9. Tanjim Hossain & Dylan Minor & John Morgan, 2011. "Competing Matchmakers: An Experimental Analysis," Management Science, INFORMS, vol. 57(11), pages 1913-1925, November.
    10. Haochun Yang & Yunyi Liang, 2023. "Examining the Connectivity between Urban Rail Transport and Regular Bus Transport," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    11. Lin, Ting (Grace) & Xia, Jianhong (Cecilia) & Robinson, Todd P. & Goulias, Konstadinos G. & Church, Richard L. & Olaru, Doina & Tapin, John & Han, Renlong, 2014. "Spatial analysis of access to and accessibility surrounding train stations: a case study of accessibility for the elderly in Perth, Western Australia," Journal of Transport Geography, Elsevier, vol. 39(C), pages 111-120.
    12. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    13. Geoff Boeing, 2020. "Urban Street Network Analysis in a Computational Notebook," REGION, European Regional Science Association, vol. 7, pages 39-51.
    14. Yan, Baicheng & Jin, Jian Gang & Zhu, Xiaoning & Lee, Der-Horng & Wang, Li & Wang, Hua, 2020. "Integrated planning of train schedule template and container transshipment operation in seaport railway terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    16. Omer Dogan & Jaewon Han & Sugie Lee, 2020. "Analysis of Large-Scale Residential Development on Walking Environments in Surrounding Neighborhoods: A Before-and-After Comparison of Apartment Complex Developments in Seoul, Korea," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    17. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    18. Wang, Shiguang & Zheng, Lili & Yu, Dexin, 2017. "The improved degree of urban road traffic network: A case study of Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 256-264.
    19. Bittihn, Stefan & Schadschneider, Andreas, 2018. "Braess paradox in a network with stochastic dynamics and fixed strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 133-152.
    20. Shanjiang Zhu & David Levinson & Henry Liu, 2017. "Measuring winners and losers from the new I-35W Mississippi River Bridge," Transportation, Springer, vol. 44(5), pages 905-918, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.