IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v593y2022ics0378437122000279.html
   My bibliography  Save this article

On the systemic nature of global inflation, its association with equity markets and financial portfolio implications

Author

Listed:
  • James, Nick
  • Chin, Kevin

Abstract

This paper uses new and recently introduced mathematical techniques to undertake a data-driven study on the systemic nature of global inflation. We start by investigating country CPI inflation over the past 70 years. There, we highlight the systemic nature of global inflation with a judicious application of eigenvalue analysis and determine which countries exhibit most “centrality” with an inner-product based optimization method. We then turn to inflationary impacts on financial market securities, where we explore country equity indices’ equity robustness and the varied performance of equity sectors during periods of significant inflationary pressure. Finally, we implement a time-varying portfolio optimization to determine which asset classes were most beneficial in increasing portfolio Sharpe ratio when an investor must hold a core (and constant) allocation to equities.

Suggested Citation

  • James, Nick & Chin, Kevin, 2022. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
  • Handle: RePEc:eee:phsmap:v:593:y:2022:i:c:s0378437122000279
    DOI: 10.1016/j.physa.2022.126895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122000279
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.126895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong-Hee Kim & Hawoong Jeong, 2005. "Systematic analysis of group identification in stock markets," Papers physics/0503076, arXiv.org, revised Oct 2005.
    2. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    3. Driessen, J.J.A.G. & Melenberg, B. & Nijman, T.E., 2003. "Common factors in international bond returns," Other publications TiSEM 06a83942-b625-4d3c-808c-a, Tilburg University, School of Economics and Management.
    4. Ferreira, Paulo & Kristoufek, Ladislav & Pereira, Eder Johnson de Area Leão, 2020. "DCCA and DMCA correlations of cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    6. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    7. L. V. Kantorovich, 1960. "Mathematical Methods of Organizing and Planning Production," Management Science, INFORMS, vol. 6(4), pages 366-422, July.
    8. Driessen, Joost & Melenberg, Bertrand & Nijman, Theo, 2003. "Common factors in international bond returns," Journal of International Money and Finance, Elsevier, vol. 22(5), pages 629-656, October.
    9. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Competition of noise and collectivity in global cryptocurrency trading: route to a self-contained market," Papers 1911.08944, arXiv.org, revised Feb 2020.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Anton J. Heckens & Sebastian M. Krause & Thomas Guhr, 2020. "Uncovering the Dynamics of Correlation Structures Relative to the Collective Market Motion," Papers 2004.12336, arXiv.org, revised Sep 2020.
    12. Fama, Eugene F., 1990. "Term-structure forecasts of interest rates, inflation and real returns," Journal of Monetary Economics, Elsevier, vol. 25(1), pages 59-76, January.
    13. Stanisław Drożdż & Ludovico Minati & Paweł Oświȩcimka & Marek Stanuszek & Marcin Wa̧torek, 2019. "Signatures of the Crypto-Currency Market Decoupling from the Forex," Future Internet, MDPI, vol. 11(7), pages 1-18, July.
    14. Wilcox, Diane & Gebbie, Tim, 2007. "An analysis of cross-correlations in an emerging market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 584-598.
    15. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    16. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    17. Stanis{l}aw Dro.zd.z & Robert Gk{e}barowski & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marcin Wk{a}torek, 2018. "Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects," Papers 1804.05916, arXiv.org, revised Jul 2018.
    18. Nick James, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Papers 2101.00576, arXiv.org, revised Feb 2021.
    19. Frederic S. Mishkin, 1990. "The Information in the Longer Maturity Term Structure about Future Inflation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(3), pages 815-828.
    20. Daniel J. Fenn & Mason A. Porter & Stacy Williams & Mark McDonald & Neil F. Johnson & Nick S. Jones, 2010. "Temporal Evolution of Financial Market Correlations," Papers 1011.3225, arXiv.org, revised May 2011.
    21. Robert Mundell, 1963. "Inflation and Real Interest," Journal of Political Economy, University of Chicago Press, vol. 71, pages 280-280.
    22. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Signatures of crypto-currency market decoupling from the Forex," Papers 1906.07834, arXiv.org, revised Jul 2019.
    23. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    24. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    25. D'aniel Kondor & M'arton P'osfai & Istv'an Csabai & G'abor Vattay, 2013. "Do the rich get richer? An empirical analysis of the BitCoin transaction network," Papers 1308.3892, arXiv.org, revised Mar 2014.
    26. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    27. Ausloos, M., 2000. "Statistical physics in foreign exchange currency and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 48-65.
    28. Raj Kumar Pan & Sitabhra Sinha, 2007. "Collective behavior of stock price movements in an emerging market," Papers 0704.0773, arXiv.org, revised Nov 2007.
    29. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    30. Tak Kuen Siu, 2011. "Long-term strategic asset allocation with inflation risk and regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1565-1580.
    31. Jeffrey Chu & Saralees Nadarajah & Stephen Chan, 2015. "Statistical Analysis of the Exchange Rate of Bitcoin," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    32. Corbet, Shaen & Larkin, Charles & Lucey, Brian, 2020. "The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies," Finance Research Letters, Elsevier, vol. 35(C).
    33. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    34. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Multifractal behavior of price and volume changes in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 54-61.
    35. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    36. Dániel Kondor & Márton Pósfai & István Csabai & Gábor Vattay, 2014. "Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    37. Manavi, Seyed Alireza & Jafari, Gholamreza & Rouhani, Shahin & Ausloos, Marcel, 2020. "Demythifying the belief in cryptocurrencies decentralized aspects. A study of cryptocurrencies time cross-correlations with common currencies, commodities and financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nick James & Max Menzies & Kevin Chin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Papers 2203.15911, arXiv.org, revised Sep 2022.
    2. James, Nick & Menzies, Max & Gottwald, Georg A., 2022. "On financial market correlation structures and diversification benefits across and within equity sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. James, Nick & Menzies, Max & Chin, Kevin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James, Nick & Menzies, Max & Chin, Kevin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Nick James & Max Menzies & Kevin Chin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Papers 2203.15911, arXiv.org, revised Sep 2022.
    3. Nick James & Kevin Chin, 2021. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Papers 2111.11022, arXiv.org, revised Jan 2022.
    4. Nick James & Max Menzies, 2021. "Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time," Papers 2107.13926, arXiv.org, revised Dec 2021.
    5. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    6. Nick James, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Papers 2101.00576, arXiv.org, revised Feb 2021.
    7. James, Nick & Menzies, Max & Gottwald, Georg A., 2022. "On financial market correlation structures and diversification benefits across and within equity sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    8. Nick James & Max Menzies, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Papers 2307.15402, arXiv.org, revised Sep 2023.
    9. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. Nick James, 2021. "Evolutionary correlation, regime switching, spectral dynamics and optimal trading strategies for cryptocurrencies and equities," Papers 2112.15321, arXiv.org, revised Mar 2022.
    11. Nick James & Max Menzies, 2021. "Efficiency of communities and financial markets during the 2020 pandemic," Papers 2104.02318, arXiv.org, revised Jul 2021.
    12. Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
    13. James, Nick & Menzies, Max, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    14. Jaros{l}aw Kwapie'n & Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z, 2021. "Cryptocurrency Market Consolidation in 2020--2021," Papers 2112.06552, arXiv.org.
    15. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2023. "Cryptocurrencies Are Becoming Part of the World Global Financial Market," Papers 2303.00495, arXiv.org.
    16. Nick James & Max Menzies & Georg A. Gottwald, 2022. "On financial market correlation structures and diversification benefits across and within equity sectors," Papers 2202.10623, arXiv.org, revised Jun 2022.
    17. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    18. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    19. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2022. "Multifractal cross-correlations of bitcoin and ether trading characteristics in the post-COVID-19 time," Papers 2208.01445, arXiv.org.
    20. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:593:y:2022:i:c:s0378437122000279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.