IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v583y2021ics0378437121006075.html
   My bibliography  Save this article

A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity

Author

Listed:
  • Zhang, Xinwei
  • Zhang, Peihong
  • Zhong, Maohua

Abstract

To better reveal the law of pedestrian flow and the mechanism of crowd accidents, this paper establishes a dual adaptive cellular automaton model (DACA) that integrates pedestrian heterogeneity, local density, target distance and asynchronous behaviour. The validity of the model is verified, and when the crowd density is greater than 3 persons/m2, the free movement of pedestrians is generally constrained by crowd density. In contrast, the critical density that affects the velocity of pedestrian movement is positively correlated with the complete free movement velocity (CFMV) of pedestrians. The steady-state density of the straight channel is negatively correlated with CFMV. A negative correlation between CFMV and the average crowd density at maximum flow is observed, and the time from highest density to steady density is independent of CFMV, but when the density is not the limit, the crowd dredging time is related to CFMV and the initial density of congestion. Finally, a case study of the start-up characteristics of a static crowd in a straight channel shows that the transmission speed of the start information under the limit density is greater than the moving speed of the crowd. The self-dredging process of crowds consumes additional time. The crowd distribution is sparse in the front and dense in the tail, and the crowd gathering risk is found to be directly proportional to the initial crowd density at the acceptable risk level. This study can effectively explore the laws of crowd movement and provide a theoretical reference for crowd safety management.

Suggested Citation

  • Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
  • Handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121006075
    DOI: 10.1016/j.physa.2021.126334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006075
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weifeng, Yuan & Kang Hai, Tan, 2007. "A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 250-262.
    2. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    3. Muramatsu, Masakuni & Nagatani, Takashi, 2000. "Jamming transition of pedestrian traffic at a crossing with open boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(1), pages 377-390.
    4. Fu, Zhijian & Yang, Lizhong & Chen, Yanqiu & Zhu, Kongjin & Zhu, Shi, 2013. "The effect of individual tendency on crowd evacuation efficiency under inhomogeneous exit attraction using a static field modified FFCA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6090-6099.
    5. Huang, Ling & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Lam, William H.K., 2009. "Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 127-141, January.
    6. Nagatani, Takashi, 2002. "Dynamical transition in merging pedestrian flow without bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(3), pages 505-515.
    7. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    8. Tajima, Yusuke & Takimoto, Kouhei & Nagatani, Takashi, 2001. "Scaling of pedestrian channel flow with a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(1), pages 257-268.
    9. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    10. Li, Na & Guo, Ren-Yong, 2020. "Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    11. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    12. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    13. Zhou, Xuemei & Hu, Jingjie & Ji, Xiangfeng & Xiao, Xiongziyan, 2019. "Cellular automaton simulation of pedestrian flow considering vision and multi-velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 982-992.
    14. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    15. Muramatsu, Masakuni & Nagatani, Takashi, 2000. "Jamming transition in two-dimensional pedestrian traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 275(1), pages 281-291.
    16. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Shiyu & Huang, Ping & Wang, Wei, 2022. "An optimization method for evacuation guidance under limited visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Jiang, Yan-Qun & Hu, Ying-Gang & Huang, Xiaoqian, 2022. "Modeling pedestrian flow through a bottleneck based on a second-order continuum model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    2. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    3. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    5. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    6. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    7. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    8. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    9. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    10. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    11. Jin, Cheng-Jie & Jiang, Rui & Wei, Wei & Li, Dawei & Guo, Ning, 2018. "Microscopic events under high-density condition in uni-directional pedestrian flow experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 237-247.
    12. Guo, Ning & Hu, Mao-Bin & Jiang, Rui, 2017. "Impact of variable body size on pedestrian dynamics by heuristics-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 109-114.
    13. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    14. Guo, Xiwei & Chen, Jianqiao & You, Suozhu & Wei, Junhong, 2013. "Modeling of pedestrian evacuation under fire emergency based on an extended heterogeneous lattice gas model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 1994-2006.
    15. Wang, Li & Liu, Mao & Meng, Bo, 2013. "Incorporating topography in a cellular automata model to simulate residents evacuation in a mountain area in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 520-528.
    16. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    17. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    18. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    19. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    20. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121006075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.