IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i3p520-528.html
   My bibliography  Save this article

Incorporating topography in a cellular automata model to simulate residents evacuation in a mountain area in China

Author

Listed:
  • Wang, Li
  • Liu, Mao
  • Meng, Bo

Abstract

In China, both the mountainous areas and the number of people who live in mountain areas occupy a significant proportion. When production accidents or natural disasters happen, the residents in mountain areas should be evacuated and the evacuation is of obvious importance to public safety. But it is a pity that there are few studies on safety evacuation in rough terrain. The particularity of the complex terrain in mountain areas, however, makes it difficult to study pedestrian evacuation. In this paper, a three-dimensional surface cellular automata model is proposed to numerically simulate the real time dynamic evacuation of residents. The model takes into account topographic characteristics (the slope gradient) of the environment and the biomechanics characteristics (weight and leg extensor power) of the residents to calculate the walking speed. This paper only focuses on the influence of topography and the physiological parameters are defined as constants according to a statistical report. Velocity varies with the topography. In order to simulate the behavior of a crowd with varying movement velocities, and a numerical algorithm is used to determine the time step of iteration. By doing so, a numerical simulation can be conducted in a 3D surface CA model. Moreover, considering residents evacuation around a gas well in a mountain area as a case, a visualization system for a three-dimensional simulation of pedestrian evacuation is developed. In the simulation process, population behaviors of congestion, queuing and collision avoidance can be observed. The simulation results are explained reasonably. Therefore, the model presented in this paper can realize a 3D dynamic simulation of pedestrian evacuation vividly in complex terrain and predict the evacuation procedure and evacuation time required, which can supply some valuable information for emergency management.

Suggested Citation

  • Wang, Li & Liu, Mao & Meng, Bo, 2013. "Incorporating topography in a cellular automata model to simulate residents evacuation in a mountain area in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 520-528.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:520-528
    DOI: 10.1016/j.physa.2012.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008746
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weifeng, Yuan & Kang Hai, Tan, 2007. "A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 250-262.
    2. Muramatsu, Masakuni & Nagatani, Takashi, 2000. "Jamming transition of pedestrian traffic at a crossing with open boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(1), pages 377-390.
    3. Huang, Y.M. & Chen, Ching-Ju, 2009. "3D Fractal reconstruction of terrain profile data based on digital elevation model," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1741-1749.
    4. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    5. Tajima, Yusuke & Nagatani, Takashi, 2002. "Clogging transition of pedestrian flow in T-shaped channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 239-250.
    6. Tajima, Yusuke & Nagatani, Takashi, 2001. "Scaling behavior of crowd flow outside a hall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 292(1), pages 545-554.
    7. Taku Fujiyama & Nick Tyler, 2010. "Predicting the walking speed of pedestrians on stairs," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(2), pages 177-202, January.
    8. Tajima, Yusuke & Takimoto, Kouhei & Nagatani, Takashi, 2001. "Scaling of pedestrian channel flow with a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(1), pages 257-268.
    9. Nagatani, Takashi, 2001. "Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 558-566.
    10. Muramatsu, Masakuni & Nagatani, Takashi, 2000. "Jamming transition in two-dimensional pedestrian traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 275(1), pages 281-291.
    11. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ogami, Tomohiro & Nishinari, Katsuhiro, 2023. "Features of ladders during evacuation from oil and LNG plants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    2. Guo, Ning & Ling, Xiang & Ding, Zhongjun & Long, Jiancheng & Zhu, Kongjin, 2019. "An improved heuristic-based model to reproduce pedestrian dynamic on the single-file staircase," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Washington Velasquez & Manuel S. Alvarez-Alvarado, 2021. "Outdoors Evacuation Routes Algorithm Using Cellular Automata and Graph Theory for Uphills and Downhills," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    4. Chen, Juan & Ma, Jian & Lo, S.M., 2018. "Geometric constraint based pedestrian movement model on stairways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1212-1230.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    2. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    3. Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    5. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    6. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    7. Ma, Peijie & Jiang, Yanqun & Zhu, Junfang & Chen, Bokui, 2019. "The effect of escape signs on the pedestrians evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    9. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    10. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    11. Jin, Cheng-Jie & Jiang, Rui & Wei, Wei & Li, Dawei & Guo, Ning, 2018. "Microscopic events under high-density condition in uni-directional pedestrian flow experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 237-247.
    12. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Yue, Hao & Hao, Herui & Chen, Xiaoming & Shao, Chunfu, 2007. "Simulation of pedestrian flow on square lattice based on cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 567-588.
    14. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    15. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    16. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    17. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    18. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    19. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    20. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:520-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.