IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v580y2021ics0378437121004015.html
   My bibliography  Save this article

Solvency contagion risk in the Chinese commercial banks’ network

Author

Listed:
  • Chen, Yu
  • Jin, Shuyue
  • Wang, Xiasi

Abstract

We study a model for solvency contagion risk in financial networks, which allows the spread of contagion to occur before the point of default. This model can quantify systemic contagion loss through stress testing. In the usual case, only the total liabilities and total assets in such a network can be observed. To overcome this problem, we adopt a Gibbs sampling method to generate samples of the interbank liabilities matrix conditioning on the edges. This methodological approach is applied to a Chinese commercial bank network. Our results show that the systemic contagion losses of this network are highly dependent on the perceived exogenous recovery rate, especially when the external shock is strong. In the stress testing, we also analyze solvency contagion losses due to equity and exposure by decomposing the changes in contagion losses from 2008 to 2018 into several individual parts. We find that the contagion losses of the network exhibit a downward trend, indicating a more robust and stable network.

Suggested Citation

  • Chen, Yu & Jin, Shuyue & Wang, Xiasi, 2021. "Solvency contagion risk in the Chinese commercial banks’ network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
  • Handle: RePEc:eee:phsmap:v:580:y:2021:i:c:s0378437121004015
    DOI: 10.1016/j.physa.2021.126128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004015
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torri, Gabriele & Giacometti, Rosella & Paterlini, Sandra, 2018. "Robust and sparse banking network estimation," European Journal of Operational Research, Elsevier, vol. 270(1), pages 51-65.
    2. C. Gouriéroux & J.‐C. Héam & A. Monfort, 2012. "Bilateral exposures and systemic solvency risk," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(4), pages 1273-1309, November.
    3. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    4. Grzegorz Hałaj & Christoffer Kok, 2013. "Assessing interbank contagion using simulated networks," Computational Management Science, Springer, vol. 10(2), pages 157-186, June.
    5. Upper, Christian & Worms, Andreas, 2004. "Estimating bilateral exposures in the German interbank market: Is there a danger of contagion?," European Economic Review, Elsevier, vol. 48(4), pages 827-849, August.
    6. Simon Wells, 2004. "Financial interlinkages in the United Kingdom's interbank market and the risk of contagion," Bank of England working papers 230, Bank of England.
    7. Gong, Chen & Tang, Pan & Wang, Yutong, 2019. "Measuring the network connectedness of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Kartik Anand & Ben Craig & Goetz von Peter, 2015. "Filling in the blanks: network structure and interbank contagion," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 625-636, April.
    9. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Risk Assessment for Banking Systems," Management Science, INFORMS, vol. 52(9), pages 1301-1314, September.
    10. Gandy, Axel & Veraart, Luitgard Anna Maria, 2019. "Adjustable network reconstruction with applications to CDS exposures," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 193-209.
    11. Langfield, Sam & Liu, Zijun & Ota, Tomohiro, 2014. "Mapping the UK interbank system," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 288-303.
    12. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    13. Anand, Kartik & van Lelyveld, Iman & Banai, Ádám & Friedrich, Soeren & Garratt, Rodney & Hałaj, Grzegorz & Fique, Jose & Hansen, Ib & Jaramillo, Serafín Martínez & Lee, Hwayun & Molina-Borboa, José Lu, 2018. "The missing links: A global study on uncovering financial network structures from partial data," Journal of Financial Stability, Elsevier, vol. 35(C), pages 107-119.
    14. Craig, Ben & von Peter, Goetz, 2014. "Interbank tiering and money center banks," Journal of Financial Intermediation, Elsevier, vol. 23(3), pages 322-347.
    15. Gara Afonso & Hyun Song Shin, 2011. "Precautionary Demand and Liquidity in Payment Systems," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 589-619, October.
    16. Iacopo Mastromatteo & Elia Zarinelli & Matteo Marsili, 2011. "Reconstruction of financial network for robust estimation of systemic risk," Papers 1109.6210, arXiv.org, revised Feb 2012.
    17. repec:dau:papers:123456789/14967 is not listed on IDEAS
    18. Zachary Feinstein, 2017. "Obligations with Physical Delivery in a Multi-Layered Financial Network," Papers 1702.07936, arXiv.org, revised May 2019.
    19. Rodrigo Cifuentes & Hyun Song Shin & Gianluigi Ferrucci, 2005. "Liquidity Risk and Contagion," Journal of the European Economic Association, MIT Press, vol. 3(2-3), pages 556-566, 04/05.
    20. Mistrulli, Paolo Emilio, 2011. "Assessing financial contagion in the interbank market: Maximum entropy versus observed interbank lending patterns," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1114-1127, May.
    21. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Using Market Information for Banking System Risk Assessment," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    22. Boucekkine, Raouf & Kazuo, Nishimura & Venditti, Alain, 2017. "Introduction to international financial markets and banking systems crises," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 87-91.
    23. Abdelkader Derbali & Lamia Jamel & Shan Wu, 2020. "RETRACTED ARTICLE: Measuring the systemic importance of Chinese banks based on risk interactions," Empirical Economics, Springer, vol. 59(4), pages 2037-2038, October.
    24. Preis, Tobias & Bardoscia, Marco & Caccioli, Fabio & Perotti, Juan Ignacio & Vivaldo, Gianna & Caldarelli, Guido, 2016. "Distress propagation in complex networks: the case of non-linear DebtRank," LSE Research Online Documents on Economics 68598, London School of Economics and Political Science, LSE Library.
    25. Glasserman, Paul & Young, H. Peyton, 2015. "How likely is contagion in financial networks?," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 383-399.
    26. Kraft, Holger & Steffensen, Mogens, 2009. "Asset allocation with contagion and explicit bankruptcy procedures," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 147-167, January.
    27. Gandy, Axel & Veraart, Luitgard A. M., 2017. "A Bayesian methodology for systemic risk assessment in financial networks," LSE Research Online Documents on Economics 66312, London School of Economics and Political Science, LSE Library.
    28. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    29. Hans Degryse & Grégory Nguyen, 2007. "Interbank Exposures: An Empirical Examination of Contagion Risk in the Belgian Banking System," International Journal of Central Banking, International Journal of Central Banking, vol. 3(2), pages 123-171, June.
    30. Edson Bastos Santos & Rama Cont, 2010. "The Brazilian Interbank Network Structure and Systemic Risk," Working Papers Series 219, Central Bank of Brazil, Research Department.
    31. Iacopo Mastromatteo & Elia Zarinelli & Matteo Marsili, 2012. "Reconstruction of financial network for robust estimation of systemic risk," Post-Print hal-00714026, HAL.
    32. Hamed Amini & Rama Cont & Andreea Minca, 2016. "Resilience To Contagion In Financial Networks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 329-365, April.
    33. Furfine, Craig H, 2003. "Interbank Exposures: Quantifying the Risk of Contagion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(1), pages 111-128, February.
    34. Bardoscia, Marco & Barucca, Paolo & Brinley Codd, Adam & Hill, John, 2017. "The decline of solvency contagion risk," Bank of England working papers 662, Bank of England.
    35. L. C. G. Rogers & L. A. M. Veraart, 2013. "Failure and Rescue in an Interbank Network," Management Science, INFORMS, vol. 59(4), pages 882-898, April.
    36. Tom Fischer, 2014. "No-Arbitrage Pricing Under Systemic Risk: Accounting For Cross-Ownership," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 97-124, January.
    37. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    38. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2015. "Distress propagation in complex networks: the case of non-linear DebtRank," Papers 1512.04460, arXiv.org, revised Sep 2016.
    39. Veraart, Luitgard A. M., 2020. "Distress and default contagion in financial networks," LSE Research Online Documents on Economics 101905, London School of Economics and Political Science, LSE Library.
    40. Axel Gandy & Luitgard A. M. Veraart, 2017. "A Bayesian Methodology for Systemic Risk Assessment in Financial Networks," Management Science, INFORMS, vol. 63(12), pages 4428-4446, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Qing & Sun, Xiaoqi & Jiang, Yile, 2022. "Concentrated commonalities and systemic risk in China's banking system: A contagion network approach," International Review of Financial Analysis, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    2. Bardoscia, Marco & Barucca, Paolo & Brinley Codd, Adam & Hill, John, 2017. "The decline of solvency contagion risk," Bank of England working papers 662, Bank of England.
    3. Bardoscia, Marco & Barucca, Paolo & Codd, Adam Brinley & Hill, John, 2019. "Forward-looking solvency contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    4. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    5. Axel Gandy & Luitgard A. M. Veraart, 2017. "A Bayesian Methodology for Systemic Risk Assessment in Financial Networks," Management Science, INFORMS, vol. 63(12), pages 4428-4446, December.
    6. Luitgard Anna Maria Veraart, 2020. "Distress and default contagion in financial networks," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 705-737, July.
    7. Paul Glasserman & H. Peyton Young, 2015. "Contagion in Financial Markets," Working Papers 15-21, Office of Financial Research, US Department of the Treasury.
    8. Veraart, Luitgard A. M., 2020. "Distress and default contagion in financial networks," LSE Research Online Documents on Economics 101905, London School of Economics and Political Science, LSE Library.
    9. Paolo Barucca & Marco Bardoscia & Fabio Caccioli & Marco D'Errico & Gabriele Visentin & Guido Caldarelli & Stefano Battiston, 2020. "Network valuation in financial systems," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1181-1204, October.
    10. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    11. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    12. Hamed Amini & Zachary Feinstein, 2020. "Optimal Network Compression," Papers 2008.08733, arXiv.org, revised Jul 2022.
    13. Batiz-Zuk, Enrique & López-Gallo, Fabrizio & Martínez-Jaramillo, Serafín & Solórzano-Margain, Juan Pablo, 2016. "Calibrating limits for large interbank exposures from a system-wide perspective," Journal of Financial Stability, Elsevier, vol. 27(C), pages 198-216.
    14. David Aikman & Daniel Beale & Adam Brinley-Codd & Anne-Caroline Hüser & Giovanni Covi & Caterina Lepore, 2023. "Macro-Prudential Stress Test Models: A Survey," IMF Working Papers 2023/173, International Monetary Fund.
    15. Amini, Hamed & Feinstein, Zachary, 2023. "Optimal network compression," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1439-1455.
    16. Ebrahimi Kahou, Mahdi & Lehar, Alfred, 2017. "Macroprudential policy: A review," Journal of Financial Stability, Elsevier, vol. 29(C), pages 92-105.
    17. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    18. Zachary Feinstein & Weijie Pang & Birgit Rudloff & Eric Schaanning & Stephan Sturm & Mackenzie Wildman, 2017. "Sensitivity of the Eisenberg-Noe clearing vector to individual interbank liabilities," Papers 1708.01561, arXiv.org, revised Oct 2018.
    19. Gabriele Visentin & Stefano Battiston & Marco D'Errico, 2016. "Rethinking Financial Contagion," Papers 1608.07831, arXiv.org.
    20. Giulia Poce & Giulio Cimini & Andrea Gabrielli & Andrea Zaccaria & Giuditta Baldacci & Marco Polito & Mariangela Rizzo & Silvia Sabatini, 2016. "What do central counterparties default funds really cover? A network-based stress test answer," Papers 1611.03782, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:580:y:2021:i:c:s0378437121004015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.