IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp498-513.html
   My bibliography  Save this article

Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing

Author

Listed:
  • Giuricich, Mario Nicoló
  • Burnecki, Krzysztof

Abstract

In this article, we concentrate on modelling heavy-tailed data which can be subjected to left-truncation. We modify an existing procedure for modelling left-truncated data via a compound non-homogeneous Poisson process to make it systematically applicable in the context heavy-tailed data. The introduced procedure can be applied when the underlying severities of the process follow Burr type XII, Generalised Pareto and Generalised Extreme Value distributions by using the Maximum Product of Spacings (MPS) parameter estimation technique. As a natural consequence of the MPS technique, we consider how Moran’s log spacings statistic for testing goodness-of-fit of the severity distributions can be adapted to suit left-truncated data. Thereafter, we compare the performance of this new fitting procedure against traditional maximum likelihood estimation in the context of natural catastrophe loss data, and evidence in favour of MPS is found. Within the context of these data, we also compare our procedure to a one that does not account for left-truncation. We end our contribution by proposing, for our modelling procedure, a Monte Carlo importance sampling algorithm which ensures that large losses are satisfactorily simulated. In closing, we illustrate the potential usage of both the new fitting and simulation procedures by presenting catastrophe bond prices with a trigger based on the analysed heavy-tailed data.

Suggested Citation

  • Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:498-513
    DOI: 10.1016/j.physa.2019.03.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119303085
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    2. Yanhui Liu & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1997. "Correlations in Economic Time Series," Papers cond-mat/9706021, arXiv.org.
    3. J-P. Bouchaud, 2001. "Power laws in economics and finance: some ideas from physics," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 105-112.
    4. Lee, Jin-Ping & Yu, Min-Teh, 2007. "Valuation of catastrophe reinsurance with catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 264-278, September.
    5. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    6. Marco Capasso & Lucia Alessi & Matteo Barigozzi & Giorgio Fagiolo, 2009. "On Approximating The Distributions Of Goodness-Of-Fit Test Statistics Based On The Empirical Distribution Function: The Case Of Unknown Parameters," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 157-167.
    7. Plerou, Vasiliki & Gopikrishnan, Parameswaran & Rosenow, Bernd & Amaral, Luis A.N. & Stanley, H.Eugene, 2000. "Econophysics: financial time series from a statistical physics point of view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 279(1), pages 443-456.
    8. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
    9. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    10. Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2005. "On fitting the Pareto–Levy distribution to stock market index data: Selecting a suitable cutoff value," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 437-449.
    11. J. David Cummins & Mary A. Weiss, 2009. "Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk‐Transfer Solutions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 493-545, September.
    12. Burnecki, Krzysztof & Kukla, Grzegorz & Weron, Rafał, 2000. "Property insurance loss distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 269-278.
    13. Bakhodir Ergashev & Konstantin Pavlikov & Stan Uryasev & Evangelos Sekeris, 2016. "Estimation of Truncated Data Samples in Operational Risk Modeling," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 613-640, September.
    14. Anna Chernobai & Krzysztof Burnecki & Svetlozar Rachev & Stefan Trück & Rafał Weron, 2006. "Modelling catastrophe claims with left-truncated severity distributions," Computational Statistics, Springer, vol. 21(3), pages 537-555, December.
    15. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    16. Pavel V. Shevchenko & Grigory Temnov, 2009. "Modeling operational risk data reported above a time-varying threshold," Papers 0904.4075, arXiv.org, revised Jul 2009.
    17. Krzysztof Burnecki & Agnieszka Wylomanska & Aleksei Chechkin, 2015. "Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
    18. Nowak, Piotr & Romaniuk, Maciej, 2013. "Pricing and simulations of catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 18-28.
    19. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    20. Cox, Samuel H. & Fairchild, Joseph R. & Pedersen, Hal W., 2004. "Valuation of structured risk management products," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 259-272, April.
    21. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    22. Burnecki, Krzysztof & Misiorek, Adam & Weron, Rafal, 2010. "Loss Distributions," MPRA Paper 22163, University Library of Munich, Germany.
    23. Burnecki, Krzysztof & Gajda, Janusz & Sikora, Grzegorz, 2011. "Stability and lack of memory of the returns of the Hang Seng index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3136-3146.
    24. M. Goldstein & S. Morris & G. Yen, 2004. "Problems with fitting to the power-law distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(2), pages 255-258, September.
    25. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    26. Takvor Soukissian & Christos Tsalis, 2015. "The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1777-1809, September.
    27. Têtu Alexandre & Lai Van Son & Soumaré Issouf & Gendron Michel, 2015. "Hedging Flood Losses Using Cat Bonds," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 9(2), pages 149-184, July.
    28. Christensen, Claus Vorm & Schmidli, Hanspeter, 2000. "Pricing catastrophe insurance products based on actually reported claims," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 189-200, October.
    29. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    30. Liu, Yanhui & Cizeau, Pierre & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Correlations in economic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 437-440.
    31. Xiaolin Luo & Pavel V. Shevchenko & John B. Donnelly, 2009. "Addressing the Impact of Data Truncation and Parameter Uncertainty on Operational Risk Estimates," Papers 0904.2910, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Binti Abdul Halim, 2022. "Earthquake Catastrophe Bond Pricing Using Extreme Value Theory: A Mini-Review Approach," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    2. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    3. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    4. Sukono & Hafizan Juahir & Riza Andrian Ibrahim & Moch Panji Agung Saputra & Yuyun Hidayat & Igif Gimin Prihanto, 2022. "Application of Compound Poisson Process in Pricing Catastrophe Bonds: A Systematic Literature Review," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    5. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    2. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    3. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Papers 1610.09875, arXiv.org.
    4. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    5. Krzysztof Burnecki & Mario Nicoló Giuricich, 2017. "Stable Weak Approximation at Work in Index-Linked Catastrophe Bond Pricing," Risks, MDPI, vol. 5(4), pages 1-19, December.
    6. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    7. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    8. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    10. Massimo Arnone & Michele Leonardo Bianchi & Anna Grazia Quaranta & Gian Luca Tassinari, 2021. "Catastrophic risks and the pricing of catastrophe equity put options," Computational Management Science, Springer, vol. 18(2), pages 213-237, June.
    11. Carolyn W. Chang & Jack S. K. Chang & Min‐Teh Yu & Yang Zhao, 2020. "Portfolio optimization in the catastrophe space," European Financial Management, European Financial Management Association, vol. 26(5), pages 1414-1448, November.
    12. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    13. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    14. Han-Bin KANG & Hsuling CHANG & Tsangyao CHANG, 2022. "Catastrophe Reinsurance Pricing -Modification of Dynamic Asset-Liability Management," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-20, December.
    15. Denis-Alexandre Trottier & Van Son Lai, 2017. "Reinsurance or CAT Bond? How to Optimally Combine Both," Working Papers 2017-003, Department of Research, Ipag Business School.
    16. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    17. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu, 2022. "Multiple-Trigger Catastrophe Bond Pricing Model and Its Simulation Using Numerical Methods," Mathematics, MDPI, vol. 10(9), pages 1-17, April.
    18. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    19. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Perrakis, Stylianos & Boloorforoosh, Ali, 2013. "Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3157-3168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:498-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.