Advanced Search
MyIDEAS: Login to save this article or follow this journal

Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach

Contents:

Author Info

  • Perrakis, Stylianos
  • Boloorforoosh, Ali

Abstract

We present a new approach to the pricing of catastrophe event (CAT) derivatives that does not assume a fully diversifiable event risk. Instead, we assume that the event occurrence and intensity affect the return of the market portfolio of an agent that trades in the event derivatives. Based on this approach, we derive values for a CAT option and a reinsurance contract on an insurer’s assets using recent results from the option pricing literature. We show that the assumption of unsystematic event risk seriously underprices the CAT option. Last, we present numerical results for our derivatives using real data from hurricane landings in Florida.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0378426613001167
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Banking & Finance.

Volume (Year): 37 (2013)
Issue (Month): 8 ()
Pages: 3157-3168

as in new window
Handle: RePEc:eee:jbfina:v:37:y:2013:i:8:p:3157-3168

Contact details of provider:
Web page: http://www.elsevier.com/locate/jbf

Related research

Keywords: Catastrophe events; Jump processes; Jump-diffusion; Insurance products; Derivative assets;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ritchken, Peter H & Kuo, Shyanjaw, 1988. " Option Bounds with Finite Revision Opportunities," Journal of Finance, American Finance Association, vol. 43(2), pages 301-08, June.
  2. Amin, Kaushik I, 1993. " Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-63, December.
  3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-49, December.
  4. Stylianos Perrakis & Jens Carsten Jackwerth & George Constantinides, 2005. "Mispricing of S&P 500 Index Options," Working Papers wp05-07, Warwick Business School, Finance Group.
  5. Lee, Jin-Ping & Yu, Min-Teh, 2007. "Valuation of catastrophe reinsurance with catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 264-278, September.
  6. Kenneth A. Froot, 2001. "The Market for Catastrophe Risk: A Clinical Examination," NBER Working Papers 8110, National Bureau of Economic Research, Inc.
  7. Narayana R. Kocherlakota, 1995. "The equity premium: it's still a puzzle," Discussion Paper / Institute for Empirical Macroeconomics 102, Federal Reserve Bank of Minneapolis.
  8. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
  9. George M. Constantinides & Michal Czerwonko & Jens Carsten Jackwerth & Stylianos Perrakis, 2011. "Are Options on Index Futures Profitable for Risk‐Averse Investors? Empirical Evidence," Journal of Finance, American Finance Association, vol. 66(4), pages 1407-1437, 08.
  10. Perrakis, Stylianos, 1986. "Option Bounds in Discrete Time: Extensions and the Pricing of the American Put," The Journal of Business, University of Chicago Press, vol. 59(1), pages 119-41, January.
  11. Amin, Kaushik I & Ng, Victor K, 1993. " Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
  12. George M. Constantinides & Stylianos Perrakis, 2002. "Stochastic Dominance Bounds on Derivative Prices in a Multiperiod Economy with Proportional Transaction Costs," NBER Working Papers 8867, National Bureau of Economic Research, Inc.
  13. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  14. Geman, Helyette & Yor, Marc, 1997. "Stochastic time changes in catastrophe option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 185-193, December.
  15. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeLi, 2010. "Pricing catastrophe options with stochastic claim arrival intensity in claim time," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 24-32, January.
  16. Pauline Barrieu & Henri Loubergé, 2009. "Hybrid Cat Bonds," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 547-578.
  17. Bakshi, Gurdip & Madan, Dilip, 2002. "Average Rate Claims with Emphasis on Catastrophe Loss Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(01), pages 93-115, March.
  18. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
  19. Levy, Haim, 1985. " Upper and Lower Bounds of Put and Call Option Value: Stochastic Dominance Approach," Journal of Finance, American Finance Association, vol. 40(4), pages 1197-1217, September.
  20. Ritchken, Peter H, 1985. " On Option Pricing Bounds," Journal of Finance, American Finance Association, vol. 40(4), pages 1219-33, September.
  21. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  22. Perrakis, Stylianos & Ryan, Peter J, 1984. " Option Pricing Bounds in Discrete Time," Journal of Finance, American Finance Association, vol. 39(2), pages 519-25, June.
  23. Duan, Jin-Chuan & Yu, Min-Teh, 2005. "Fair insurance guaranty premia in the presence of risk-based capital regulations, stochastic interest rate and catastrophe risk," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2435-2454, October.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:8:p:3157-3168. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.