IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v516y2019icp327-339.html
   My bibliography  Save this article

Double correlation model for operational risk: Evidence from Chinese commercial banks

Author

Listed:
  • Xu, Chi
  • Zheng, Chunling
  • Wang, Donghua
  • Ji, Jingru
  • Wang, Nuan

Abstract

The Basel Accord requires commercial banks to meet a capital requirement for operational risk. Therefore, a reliable operational risk measurement is of great significance for financial institutions. In this paper, based on the framework of LDA, we propose a more appropriate model (Double Correlation model) in correlation structure construction, which considers both frequency correlation and mean severity correlation simultaneously. On this basis, annual loss scenarios for each risk cell are restored and VaR is also estimated by Monte Carlo simulation. Empirical study adopts the data of Chinese commercial banks disclosed to the public and contains the comparison of double correlation model and the other four correlation models. The result indicates that the VaR estimated by the double correlation model is significantly lower than that upon the assumption of comonotonicity, proving the existence of risk diversification. Meanwhile, the VaR estimated by double correlation model is significantly lower than that of the other two correlation models when confidence level is lower than 99% but the relationships between them will reverse if the confidence level rises to more than 99%.

Suggested Citation

  • Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
  • Handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:327-339
    DOI: 10.1016/j.physa.2018.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313694
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carole Bernard & Michel Denuit & Steven Vanduffel, 2018. "Measuring Portfolio Risk Under Partial Dependence Information," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(3), pages 843-863, September.
    2. Dalla Valle, L. & Giudici, P., 2008. "A Bayesian approach to estimate the marginal loss distributions in operational risk management," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3107-3127, February.
    3. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    4. Gareth W. Peters & Pavel V. Shevchenko & Bertrand Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Papers 1607.02319, arXiv.org, revised Sep 2016.
    5. Cornalba, Chiara & Giudici, Paolo, 2004. "Statistical models for operational risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 166-172.
    6. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    7. Pfeifer, Dietmar & Nešlehová, Johana, 2004. "Modeling and Generating Dependent Risk Processes for IRM and DFA," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 333-360, November.
    8. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    9. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    10. Stefan Mittnik & Irina Starobinskaya, 2010. "Modeling Dependencies in Operational Risk with Hybrid Bayesian Networks," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 379-390, September.
    11. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    12. Wang, Zongrun & Wang, Wuchao & Chen, Xiaohong & Jin, Yanbo & Zhou, Yanju, 2012. "Using BS-PSD-LDA approach to measure operational risk of Chinese commercial banks," Economic Modelling, Elsevier, vol. 29(6), pages 2095-2103.
    13. Han, Jinmian & Wang, Wei & Wang, Jiaqi, 2015. "POT model for operational risk: Experience with the analysis of the data collected from Chinese commercial banks," China Economic Review, Elsevier, vol. 36(C), pages 325-340.
    14. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    15. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    16. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01391091, HAL.
    17. Jianping Li & Jichuang Feng & Jianming Chen, 2009. "A Piecewise-Defined Severity Distribution-Based Loss Distribution Approach To Estimate Operational Risk: Evidence From Chinese National Commercial Banks," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 727-747.
    18. Avanzi, Benjamin & Tao, Jamie & Wong, Bernard & Yang, Xinda, 2016. "Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Lévy copulas," Annals of Actuarial Science, Cambridge University Press, vol. 10(1), pages 87-117, March.
    19. Kühn, Reimer & Neu, Peter, 2003. "Functional correlation approach to operational risk in banking organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 650-666.
    20. Dominique Guegan & Bertrand Hassani, 2013. "Multivariate VaRs for operational risk capital computation: a vine structure approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00645778, HAL.
    21. E. C. Brechmann & M. Heiden & Y. Okhrin, 2018. "A multivariate volatility vine copula model," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 281-308, April.
    22. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    23. Dominique Guegan & Bertrand Hassani, 2013. "Multivariate VaRs for operational risk capital computation: a vine structure approach," Post-Print halshs-00645778, HAL.
    24. Martin Neil & Norman Fenton & Manesh Tailor, 2005. "Using Bayesian Networks to Model Expected and Unexpected Operational Losses," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 963-972, August.
    25. Dominique Guegan & Bertrand Hassani, 2013. "Multivariate VaRs for operational risk capital computation: a vine structure approach," PSE-Ecole d'économie de Paris (Postprint) halshs-00645778, HAL.
    26. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Documents de travail du Centre d'Economie de la Sorbonne 16065, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    27. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2018. "Rearrangement algorithm and maximum entropy," Annals of Operations Research, Springer, vol. 261(1), pages 107-134, February.
    28. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    29. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Post-Print halshs-01391091, HAL.
    30. Zhou, Xiaoping & Durfee, Antonina V. & Fabozzi, Frank J., 2016. "On stability of operational risk estimates by LDA: From causes to approaches," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 266-278.
    31. Paul Embrechts & Giovanni Puccetti, 2006. "Bounds for Functions of Dependent Risks," Finance and Stochastics, Springer, vol. 10(3), pages 341-352, September.
    32. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    33. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    34. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    35. Allen, Linda & Bali, Turan G., 2007. "Cyclicality in catastrophic and operational risk measurements," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1191-1235, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Yinhong Yao & Jianping Li, 2022. "Operational risk assessment of third-party payment platforms: a case study of China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    3. Jin, Chenglu & Chen, Rongda & Cheng, Diandian & Mo, Sitian & Yang, Ke, 2020. "The dependency measures of commercial bank risks: Using an optimal copula selection method based on non-parametric kernel density," Finance Research Letters, Elsevier, vol. 37(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    2. Xiaoqian Zhu & Jianping Li & Dengsheng Wu, 2019. "Should the Advanced Measurement Approach for Operational Risk be Discarded? Evidence from the Chinese Banking Industry," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-15, March.
    3. Mejdoub, Hanène & Ben Arab, Mounira, 2018. "Impact of dependence modeling of non-life insurance risks on capital requirement: D-Vine Copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 208-218.
    4. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    5. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    6. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2020. "Operational and cyber risks in the financial sector," BIS Working Papers 840, Bank for International Settlements.
    7. Marco Migueis, 2017. "Forward-looking and Incentive-compatible Operational Risk Capital Framework," Finance and Economics Discussion Series 2017-087, Board of Governors of the Federal Reserve System (U.S.).
    8. Marco Migueis, 2019. "Evaluating the AMA and the new standardized approach for operational risk capital," Journal of Banking Regulation, Palgrave Macmillan, vol. 20(4), pages 302-311, December.
    9. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    10. Yinhong Yao & Jianping Li, 2022. "Operational risk assessment of third-party payment platforms: a case study of China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    11. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    12. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    13. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    14. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    15. Bertrand K. Hassani & Alexis Renaudin, 2018. "The Cascade Bayesian Approach: Prior Transformation for a Controlled Integration of Internal Data, External Data and Scenarios," Risks, MDPI, vol. 6(2), pages 1-17, April.
    16. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    17. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    18. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    19. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    20. Wanling Huang & André Varella Mollick & Khoa Huu Nguyen, 2017. "Dynamic responses and tail-dependence among commodities, the US real interest rate and the dollar," Empirical Economics, Springer, vol. 53(3), pages 959-997, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:327-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.