Advanced Search
MyIDEAS: Login to save this article or follow this journal

A Bayesian approach to estimate the marginal loss distributions in operational risk management

Contents:

Author Info

  • Dalla Valle, L.
  • Giudici, P.

Abstract

One of the main problems in operational risk management is the lack of loss data, which affects the parameter estimates of the marginal distributions of the losses. The principal reason is that financial institutions only started to collect operational loss data a few years ago, due to the relatively recent definition of this type of risk. Considering this drawback, the employment of Bayesian methods and simulation tools could be a natural solution to the problem. The use of Bayesian methods allows us to integrate the scarce and, sometimes, inaccurate quantitative data collected by the bank with prior information provided by experts. An original proposal is a Bayesian approach for modelling operational risk and for calculating the capital required to cover the estimated risks. Besides this methodological innovation a computational scheme, based on Markov chain Monte Carlo simulations, is required. In particular, the application of the MCMC method to estimate the parameters of the marginals shows advantages in terms of a reduction of capital charge according to different choices of the marginal loss distributions.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V8V-4PT7WTW-3/1/0149e7b72a52f590ba2b916d0fa1b10d
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 52 (2008)
Issue (Month): 6 (February)
Pages: 3107-3127

as in new window
Handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3107-3127

Contact details of provider:
Web page: http://www.elsevier.com/locate/csda

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
  2. Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
  3. Kühn, Reimer & Neu, Peter, 2003. "Functional correlation approach to operational risk in banking organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 650-666.
  4. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626.
  5. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477444.
  6. Jacques Pezier, 2002. "A Constructive Review of Basel's Proposals on Operational Risk," ICMA Centre Discussion Papers in Finance icma-dp2002-20, Henley Business School, Reading University.
  7. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477451.
  8. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk (3): Their Validity under Market Stress," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(3), pages 181-237, October.
  9. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521405515.
  10. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  11. Cornalba, Chiara & Giudici, Paolo, 2004. "Statistical models for operational risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 166-172.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Paola Cerchiello & Paolo Giudici, 2013. "H Index: A Statistical Proposal," DEM Working Papers Series 039, University of Pavia, Department of Economics and Management.
  2. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
  3. Silvia Figini & Lijun Gao & Paolo Giudici, 2013. "Bayesian operational risk models," DEM Working Papers Series 047, University of Pavia, Department of Economics and Management.
  4. Fantazzini, Dean, 2008. "Econometric Analysis of Financial Data in Risk Management (continuation). Section III: Managing Operational Risk," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 11(3), pages 87-122.
  5. Paola Cerchiello & Paolo Giudici, 2014. "How to measure the quality of financial tweets," DEM Working Papers Series 069, University of Pavia, Department of Economics and Management.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3107-3127. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.