IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp666-681.html
   My bibliography  Save this article

Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior

Author

Listed:
  • Jin, Cheng-Jie
  • Jiang, Rui
  • Yin, Jun-Lin
  • Dong, Li-Yun
  • Li, Dawei

Abstract

In the experiments of bi-directional pedestrian flow, it is often observed that pedestrians turn their bodies and change from walking straight to walking sideways, in order to mitigate or avoid the conflicts with opposite walking ones. When these conflicts disappear, pedestrians restore and walk straight again. In the turning states, the forward velocities of pedestrians are not affected. In order to simulate this body-turning behavior, we use a cellular automaton (CA) model named ITP model, which has been proposed before. But the occupied area of one pedestrian is set as 0.4 m∗0.2 m. After the introduction of new rules of turnings and restorations, the pedestrians become more intelligent and flexible during the lane formation process, and some improvements of the fundamental diagram of pedestrian flow can be found. The simulation results of two different scenarios under open boundary conditions are also presented, and compared with the experimental data. It is shown that the new model performs much better than the original model in various tests, which further confirms the validity of the new rules. We think this approach is one useful contribution to the pedestrian flow modeling.

Suggested Citation

  • Jin, Cheng-Jie & Jiang, Rui & Yin, Jun-Lin & Dong, Li-Yun & Li, Dawei, 2017. "Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 666-681.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:666-681
    DOI: 10.1016/j.physa.2017.04.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304338
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tajima, Yusuke & Takimoto, Kouhei & Nagatani, Takashi, 2002. "Pattern formation and jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 709-723.
    2. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    3. Yue, Hao & Hao, Herui & Chen, Xiaoming & Shao, Chunfu, 2007. "Simulation of pedestrian flow on square lattice based on cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 567-588.
    4. Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
    5. Fukamachi, Masahiro & Nagatani, Takashi, 2007. "Sidle effect on pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 269-278.
    6. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    7. Cheng-Jie Jin & Wei Wang & Rui Jiang & Li-Yun Dong, 2017. "Simulating pedestrian flow by an improved two-process cellular automaton model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(02), pages 1-17, February.
    8. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    2. Zhao, Yongxiang & Lu, Tuantuan & Su, Wenliang & Wu, Peng & Fu, Libi & Li, Meifang, 2019. "Quantitative measurement of social repulsive force in pedestrian movements based on physiological responses," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 1-20.
    3. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Aurell, Alexander & Djehiche, Boualem, 2019. "Modeling tagged pedestrian motion: A mean-field type game approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 168-183.
    5. Kim, Jooyoung & Ahn, Chiwon & Lee, Seungjae, 2018. "Modeling handicapped pedestrians considering physical characteristics using cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 507-517.
    6. Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning, 2021. "Phase behaviors of counterflowing stream of pedestrians with site-exchange in local vision and environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    7. Bao, Yu & Huo, Feizhou, 2021. "An agent-based model for staircase evacuation considering agent’s rotational behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qi, 2015. "Simulation model of bi-directional pedestrian considering potential effect ahead and behind," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 335-348.
    2. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    3. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    4. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning, 2021. "Phase behaviors of counterflowing stream of pedestrians with site-exchange in local vision and environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    6. Yunqiang Xue & Meng Zhong & Luowei Xue & Bing Zhang & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "Simulation Analysis of Bus Passenger Boarding and Alighting Behavior Based on Cellular Automata," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    7. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    8. Zhou, Xuemei & Hu, Jingjie & Ji, Xiangfeng & Xiao, Xiongziyan, 2019. "Cellular automaton simulation of pedestrian flow considering vision and multi-velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 982-992.
    9. Chen, Yanyan & Chen, Ning & Wang, Yang & Wang, Zhenbao & Feng, Guochen, 2015. "Modeling pedestrian behaviors under attracting incidents using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 287-300.
    10. Tang, Tie-Qiao & Shao, Yi-Xiao & Chen, Liang, 2017. "Modeling pedestrian movement at the hall of high-speed railway station during the check-in process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 157-166.
    11. Moonsoo Ko & Taewan Kim & Keemin Sohn, 2013. "Calibrating a social-force-based pedestrian walking model based on maximum likelihood estimation," Transportation, Springer, vol. 40(1), pages 91-107, January.
    12. Luo, Lin & Liu, Xiaobo & Fu, Zhijian & Ma, Jian & Liu, Fanxiao, 2020. "Modeling following behavior and right-side-preference in multidirectional pedestrian flows by modified FFCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    13. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    15. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    16. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    18. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    19. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    20. Gao, Jin & Zhang, Jingjing & He, Jun & Gong, Jinghai & Zhao, Jincheng, 2020. "Experiment and simulation of pedestrian’s behaviors during evacuation in an office," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:666-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.