IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v460y2016icp335-347.html
   My bibliography  Save this article

Effects of vehicle–pedestrian interaction and speed limit on traffic performance of intersections

Author

Listed:
  • Li, Xiang
  • Sun, Jian-Qiao

Abstract

The intersection model consisting of vehicle model, pedestrian model, pedestrian–vehicle interaction model and intersection rules has been presented in this paper. The well-established vehicle and pedestrian movement models in the literature are combined and applied to the intersection system with additional rules. Extensive numerical simulations with different scenarios are carried out. The effects of road speed limit, vehicle arrival rate, pedestrian regularity rate and vehicle rational rate on the intersection performance are quantitatively investigated. Three measures of the traffic performance are studied including transportation efficiency, energy economy and traffic safety. We have found that the energy economy can be achieved with the high transportation efficiency, and that the traffic safety is in conflict with the efficiency. Furthermore, we have found that the pedestrian interference makes the intersection performance worse, resulting in lower transportation efficiency, more energy consumptions and higher safety risk.

Suggested Citation

  • Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of vehicle–pedestrian interaction and speed limit on traffic performance of intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 335-347.
  • Handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:335-347
    DOI: 10.1016/j.physa.2016.05.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302199
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song, 2006. "Interaction between vehicle and pedestrians in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 239-246.
    2. Muramatsu, Masakuni & Nagatani, Takashi, 2000. "Jamming transition of pedestrian traffic at a crossing with open boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(1), pages 377-390.
    3. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of turning and through lane sharing on traffic performance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 622-640.
    4. Yang, Jianguo & Deng, Wen & Wang, Jinmei & Li, Qingfeng & Wang, Zhaoan, 2006. "Modeling pedestrians' road crossing behavior in traffic system micro-simulation in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 280-290, March.
    5. Li, Xiang & Sun, Jian-Qiao, 2015. "Studies of vehicle lane-changing to avoid pedestrians with cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 251-271.
    6. Jiang, Rui & Wu, Qing-Song, 2007. "Pedestrian behaviors in a lattice gas model with large maximum velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 683-693.
    7. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    8. Ishaque, Muhammad Moazzam & Noland, Robert B., 2007. "Trade-offs between vehicular and pedestrian traffic using micro-simulation methods," Transport Policy, Elsevier, vol. 14(2), pages 124-138, March.
    9. Li, Xiang & Sun, Jian-Qiao, 2014. "Effect of interactions between vehicles and pedestrians on fuel consumption and emissions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 661-675.
    10. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    11. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    12. Jiang, Rui & Wu, Qing-Song, 2006. "The moving behavior of a large object in the crowds in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 457-463.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yue & Li, Dewei & Cheng, Jianhui, 2021. "Simulation of pedestrian–vehicle interference in railway station drop-off area based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    2. Li, Xiang & Sun, Jian-Qiao, 2017. "Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 41-58.
    3. Wang, Yan & Peng, Zhongyi & Chen, Qun, 2018. "Simulated interactions of pedestrian crossings and motorized vehicles in residential areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1046-1060.
    4. Biao Yin & Monica Menendez & Kaidi Yang, 2021. "Joint Optimization of Intersection Control and Trajectory Planning Accounting for Pedestrians in a Connected and Automated Vehicle Environment," Sustainability, MDPI, vol. 13(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiang & Sun, Jian-Qiao, 2014. "Effect of interactions between vehicles and pedestrians on fuel consumption and emissions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 661-675.
    2. Li, Xiang & Sun, Jian-Qiao, 2015. "Studies of vehicle lane-changing to avoid pedestrians with cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 251-271.
    3. Li, Xiang & Sun, Jian-Qiao, 2017. "Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 41-58.
    4. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of turning and through lane sharing on traffic performance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 622-640.
    5. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    6. Li, Xiang & Sun, Jian-Qiao, 2019. "Intersection multi-objective optimization on signal setting and lane assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1233-1246.
    7. Ma, Peijie & Jiang, Yanqun & Zhu, Junfang & Chen, Bokui, 2019. "The effect of escape signs on the pedestrians evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Zhang, Xiaoyan & Jarrett, David F., 1997. "Stability analysis of the classical car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 441-462, November.
    9. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    10. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    11. Helbing, Dirk, 1995. "Theoretical foundation of macroscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 219(3), pages 375-390.
    12. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    13. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    14. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    15. Mauch, Michael, 2002. "Analyses of Start-Stop Waves in Congested Freeway Traffic," University of California Transportation Center, Working Papers qt9kb9x6n5, University of California Transportation Center.
    16. Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
    17. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    18. Holland, E. N., 1998. "A generalised stability criterion for motorway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 141-154, February.
    19. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    20. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:335-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.