Advanced Search
MyIDEAS: Login to save this article or follow this journal

Random-growth urban model with geographical fitness

Contents:

Author Info

  • Kii, Masanobu
  • Akimoto, Keigo
  • Doi, Kenji
Registered author(s):

    Abstract

    This paper formulates a random-growth urban model with a notion of geographical fitness. Using techniques of complex-network theory, we study our system as a type of preferential-attachment model with fitness, and we analyze its macro behavior to clarify the properties of the city-size distributions it predicts. First, restricting the geographical fitness to take positive values and using a continuum approach, we show that the city-size distributions predicted by our model asymptotically approach Pareto distributions with coefficients greater than unity. Then, allowing the geographical fitness to take negative values, we perform local coefficient analysis to show that the predicted city-size distributions can deviate from Pareto distributions, as is often observed in actual city-size distributions. As a result, the model we propose can generate a generic class of city-size distributions, including but not limited to Pareto distributions. For applications to city-population projections, our simple model requires randomness only when new cities are created, not during their subsequent growth. This property leads to smooth trajectories of city population growth, in contrast to other models using Gibrat’s law. In addition, a discrete form of our dynamical equations can be used to estimate past city populations based on present-day data; this fact allows quantitative assessment of the performance of our model. Further study is needed to determine appropriate formulas for the geographical fitness.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112007029
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 391 (2012)
    Issue (Month): 23 ()
    Pages: 5960-5970

    as in new window
    Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5960-5970

    Contact details of provider:
    Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    Related research

    Keywords: Urban population; Pareto distribution; Complex network; Geographical fitness; Zipf’s law;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. J.V. Henderson, 1972. "The Sizes and Types of Cities," Working Papers 75, Queen's University, Department of Economics.
    2. Benguigui, Lucien & Blumenfeld-Lieberthal, Efrat, 2009. "The temporal evolution of the city size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1187-1195.
    3. Ergün, G. & Rodgers, G.J., 2002. "Growing random networks with fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 261-272.
    4. Duncan Black & Vernon Henderson, 2003. "Urban evolution in the USA," Journal of Economic Geography, Oxford University Press, vol. 3(4), pages 343-372, October.
    5. Nitsch, Volker, 2005. "Zipf zipped," Journal of Urban Economics, Elsevier, vol. 57(1), pages 86-100, January.
    6. Soo, Kwok Tong, 2005. "Zipf's Law for cities: a cross-country investigation," Regional Science and Urban Economics, Elsevier, vol. 35(3), pages 239-263, May.
    7. Donald R. Davis & David E. Weinstein, 2002. "Bones, bombs and break points: The geography of economic activity," Discussion Papers 0102-02, Columbia University, Department of Economics.
    8. Esteban Rossi-Hansberg & Mark L.J. Wright, 2005. "Urban Structure and Growth," NBER Working Papers 11262, National Bureau of Economic Research, Inc.
    9. Masahisa Fujita & Paul Krugman & Anthony J. Venables, 2001. "The Spatial Economy: Cities, Regions, and International Trade," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262561476, December.
    10. Xavier Gabaix, 1999. "Zipf'S Law For Cities: An Explanation," The Quarterly Journal of Economics, MIT Press, vol. 114(3), pages 739-767, August.
    11. Li, Xiang & Ying Jin, Yu & Chen, Guanrong, 2003. "Complexity and synchronization of the World trade Web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 287-296.
    12. Xavier Gabaix, 1999. "Zipf's Law and the Growth of Cities," American Economic Review, American Economic Association, vol. 89(2), pages 129-132, May.
    13. Malcolm Asadoorian, 2008. "Simulating the spatial distribution of population and emissions to 2100," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 39(3), pages 199-221, March.
    14. Gabaix, Xavier & Ioannides, Yannis M., 2004. "The evolution of city size distributions," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 53, pages 2341-2378 Elsevier.
    15. Maarten Bosker & Steven Brakman & Harry Garretsen & Marc Schramm, 2006. "A Century of Shocks: The Evolution of the German City Size Distribution 1925 – 1999," CESifo Working Paper Series 1728, CESifo Group Munich.
    16. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    17. Sarabia, José María & Prieto, Faustino, 2009. "The Pareto-positive stable distribution: A new descriptive model for city size data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4179-4191.
    18. Moura, Newton J. & Ribeiro, Marcelo B., 2006. "Zipf law for Brazilian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 441-448.
    19. Rosen, Kenneth T. & Resnick, Mitchel, 1980. "The size distribution of cities: An examination of the Pareto law and primacy," Journal of Urban Economics, Elsevier, vol. 8(2), pages 165-186, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Young, D.S., 2013. "Approximate tolerance limits for Zipf–Mandelbrot distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1702-1711.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5960-5970. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.