Advanced Search
MyIDEAS: Login

Continuity and completeness under risk

Contents:

Author Info

  • Dubra, Juan

Abstract

Suppose some non-degenerate preferences R, with strict part P, over risky outcomes satisfy Independence. Then, when they satisfy any two of the following axioms, they satisfy the third. Herstein-Milnor: for all lotteries p,q,r, the set of a's for which ap+(1-a)qRr is closed. Archimedean: for all p,q,r there exists a>0 such that if pPq, then ap+(1-a)rPq. Complete: for all p,q, either pRq or qRp.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V88-51GHWPV-1/2/0ba6a29f29a8fbf69f0a20f2f34ff665
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Mathematical Social Sciences.

Volume (Year): 61 (2011)
Issue (Month): 1 (January)
Pages: 80-81

as in new window
Handle: RePEc:eee:matsoc:v:61:y:2011:i:1:p:80-81

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/505565

Related research

Keywords: Incomplete preferences Independence axiom Archimedean property;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Juan Dubra & Fabio Maacheroni & Efe A. Ok, 2001. "Expected Utility Theory without the Completeness Axiom," Cowles Foundation Discussion Papers 1294, Cowles Foundation for Research in Economics, Yale University.
  2. SCHMEIDLER, David, . "A condition for the completeness of partial preference relations," CORE Discussion Papers RP -86, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Karni, Edi, 2007. "Archimedean and continuity," Mathematical Social Sciences, Elsevier, vol. 53(3), pages 332-334, May.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Georgios Gerasimou, 2013. "On continuity of incomplete preferences," Social Choice and Welfare, Springer, vol. 41(1), pages 157-167, June.
  2. Tsogbadral Galaabaatar & Edi Karni, 2010. "Objective and Subjective Expected Utility with Incomplete Preferences," Economics Working Paper Archive 572, The Johns Hopkins University,Department of Economics.
  3. Karni, Edi, 2011. "Continuity, completeness and the definition of weak preferences," Mathematical Social Sciences, Elsevier, vol. 62(2), pages 123-125, September.
  4. Galaabaatar, Tsogbadral & Karni, Edi, 2012. "Expected multi-utility representations," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 242-246.
  5. Edi Karni & Tsogbadral Galaabaatar, 2012. "Expected Multi-Utility Representations," Economics Working Paper Archive 592, The Johns Hopkins University,Department of Economics.
  6. Özgür Evren, 2012. "Scalarization Methods and Expected Multi-Utility Representations," Working Papers w0174, Center for Economic and Financial Research (CEFIR).

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:61:y:2011:i:1:p:80-81. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.