IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v205y2023icp251-271.html
   My bibliography  Save this article

Very fast algorithms for implied barriers and moving-barrier options pricing

Author

Listed:
  • Lu, Yu-Ming
  • Lyuu, Yuh-Dauh

Abstract

Two closely related O(nlogn)-time tree algorithms under the Black–Scholes model are presented, where n denotes the tree’s number of time steps. The first finds the implied step barrier that matches the barrier-hitting probabilities exactly. In the constant-barrier case, the implied barrier is surprisingly accurate even for small ns; indeed, n=1 gives good results in typical situations. The second prices options with a time-dependent barrier (i.e., moving-barrier options). In practice, both algorithms are one to three orders faster than the standard algorithms even when n is moderate. As a consequence, large portfolios or datasets can finally be studied in a timely manner. Both algorithms can be easily tailored to handle barriers that are continuously monitored, discretely monitored, a mixture of both, or even when the model parameters are all time varying.

Suggested Citation

  • Lu, Yu-Ming & Lyuu, Yuh-Dauh, 2023. "Very fast algorithms for implied barriers and moving-barrier options pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 251-271.
  • Handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:251-271
    DOI: 10.1016/j.matcom.2022.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422003950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tristan Guillaume, 2010. "Step double barrier options," Post-Print hal-00924266, HAL.
    2. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    3. Figlewski, Stephen & Gao, Bin, 1999. "The adaptive mesh model: a new approach to efficient option pricing," Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
    4. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    5. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    6. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Grant Armstrong, 2001. "Valuation formulae for window barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(4), pages 197-208.
    9. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    10. Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2015. "Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 418-437.
    11. Cho H. Hui, 1997. "Time‐dependent barrier option values," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(6), pages 667-688, September.
    12. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    13. Hangsuck Lee & Gaeun Lee & Seongjoo Song, 2021. "Multi-step Reflection Principle and Barrier Options," Papers 2105.15008, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuh‐Dauh Lyuu & Yu‐Quan Zhang, 2023. "Pricing multiasset time‐varying double‐barrier options with time‐dependent parameters," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(3), pages 404-434, March.
    2. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    3. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    4. Sanjiv R. Das & Rangarajan K. Sundaram, 2007. "An Integrated Model for Hybrid Securities," Management Science, INFORMS, vol. 53(9), pages 1439-1451, September.
    5. Tancheva, Z., 2021. "Essays on macro-finance and market anomalies," Other publications TiSEM 3cdb4eb6-0313-4a7a-81c4-2, Tilburg University, School of Economics and Management.
    6. Hilscher, Jens & Raviv, Alon, 2014. "Bank stability and market discipline: The effect of contingent capital on risk taking and default probability," Journal of Corporate Finance, Elsevier, vol. 29(C), pages 542-560.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Marisa Cenci & Andrea Gheno, 2005. "Equity and debt valuation with default risk: a discrete structural model," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 875-881.
    9. Fernández, Pablo, 1996. "Convertible bonds in Spain: A different security," IESE Research Papers D/311, IESE Business School.
    10. Liu, Liang-Chih & Dai, Tian-Shyr & Wang, Chuan-Ju, 2016. "Evaluating corporate bonds and analyzing claim holders’ decisions with complex debt structure," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 151-174.
    11. Chen, Ren-Raw & Chidambaran, N.K. & Imerman, Michael B. & Sopranzetti, Ben J., 2014. "Liquidity, leverage, and Lehman: A structural analysis of financial institutions in crisis," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 117-139.
    12. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    13. Michael L. McIntyre, 2023. "A characterization of the Lender's position in the context of contractual loan conditions," SN Business & Economics, Springer, vol. 3(8), pages 1-27, August.
    14. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    15. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    16. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    17. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    18. Zhijian (James) Huang & Yuchen Luo, 2016. "Revisiting Structural Modeling of Credit Risk—Evidence from the Credit Default Swap (CDS) Market," JRFM, MDPI, vol. 9(2), pages 1-20, May.
    19. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    20. Jobst, Andreas A., 2014. "Measuring systemic risk-adjusted liquidity (SRL)—A model approach," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 270-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:251-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.