IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v199y2022icp202-216.html
   My bibliography  Save this article

Practical identifiability of parametrised models: A review of benefits and limitations of various approaches

Author

Listed:
  • Lam, Nicholas N.
  • Docherty, Paul D.
  • Murray, Rua

Abstract

This systematic review of practical identifiability (PI) explores the challenging issue of how parameter identification of models is affected by both experimental considerations and model structure. Structural identifiability (SI) analyses that yield binary assessment of parameter uniqueness have been historically dominant in the field. However, recent developments in the less explored PI domain have facilitated more nuanced estimates of identified model parameter trade-off and variance. As PI acknowledges variation in parameter estimates due to real-world limitations in data quality and quantity, it can both explore how parameters may trade-off, and guide more informative experimental design.

Suggested Citation

  • Lam, Nicholas N. & Docherty, Paul D. & Murray, Rua, 2022. "Practical identifiability of parametrised models: A review of benefits and limitations of various approaches," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 202-216.
  • Handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:202-216
    DOI: 10.1016/j.matcom.2022.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    2. D. J. Venzon & S. H. Moolgavkar, 1988. "A Method for Computing Profile‐Likelihood‐Based Confidence Intervals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 87-94, March.
    3. Diana Paola Lizarralde-Bejarano & Daniel Rojas-Díaz & Sair Arboleda-Sánchez & María Eugenia Puerta-Yepes, 2020. "Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data of an endemic municipality of Colombia," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-29, March.
    4. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    5. D Joubert & J D Stigter & J Molenaar, 2018. "Determining minimal output sets that ensure structural identifiability," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    6. Maria Pia Saccomani & Karl Thomaseth, 2018. "The Union between Structural and Practical Identifiability Makes Strength in Reducing Oncological Model Complexity: A Case Study," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albonico, Alice & Paccagnini, Alessia & Tirelli, Patrizio, 2017. "Great recession, slow recovery and muted fiscal policies in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 81(C), pages 140-161.
    2. Acurio Vásconez, Verónica & Giraud, Gaël & Mc Isaac, Florent & Pham, Ngoc-Sang, 2015. "The effects of oil price shocks in a new-Keynesian framework with capital accumulation," Energy Policy, Elsevier, vol. 86(C), pages 844-854.
    3. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    4. Cristiano Cantore & Filippo Ferroni & Miguel León-Ledesma, 2021. "The Missing Link: Monetary Policy and The Labor Share," Journal of the European Economic Association, European Economic Association, vol. 19(3), pages 1592-1620.
    5. Bletzinger, Tilman & Lalik, Magdalena, 2017. "The impact of constrained monetary policy on fiscal multipliers on output and inflation," Working Paper Series 2019, European Central Bank.
    6. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    7. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    8. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    9. Will, A. & Bustos, J. & Bocco, M. & Gotay, J. & Lamelas, C., 2013. "On the use of niching genetic algorithms for variable selection in solar radiation estimation," Renewable Energy, Elsevier, vol. 50(C), pages 168-176.
    10. Cristiano Cantore & Vasco J. Gabriel & Paul Levine & Joseph Pearlman & Bo Yang, 2013. "The science and art of DSGE modelling: II – model comparisons, model validation, policy analysis and general discussion," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 19, pages 441-463, Edward Elgar Publishing.
    11. DJINKPO, Medard, 2019. "A DSGE model for Fiscal Policy Analysis in The Gambia," MPRA Paper 97874, University Library of Munich, Germany, revised 30 Dec 2019.
    12. Jonathan Benchimol, 2015. "Money in the production function: A new Keynesian DSGE perspective," Southern Economic Journal, John Wiley & Sons, vol. 82(1), pages 152-184, July.
    13. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    14. Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2021. "Versatile forward guidance: escaping or switching?," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    15. De Paoli, Bianca & Scott, Alasdair & Weeken, Olaf, 2010. "Asset pricing implications of a New Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2056-2073, October.
    16. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    17. Elton Beqiraj & Giovanni Di Bartolomeo & Marco Di Pietro & Carolina Serpieri, 2020. "Bounded rationality and heterogeneous expectations: Euler versus anticipated-utility approach," Journal of Economics, Springer, vol. 130(3), pages 249-273, August.
    18. Ben Weidmann & David J. Deming, 2020. "Team Players: How Social Skills Improve Group Performance," NBER Working Papers 27071, National Bureau of Economic Research, Inc.
    19. Gelain, Paolo & Iskrev, Nikolay & J. Lansing, Kevin & Mendicino, Caterina, 2019. "Inflation dynamics and adaptive expectations in an estimated DSGE model," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 258-277.
    20. Frédéric Branger & Louis-Gaëtan Giraudet & Céline Guivarch & Philippe Quirion, 2014. "Sensitivity analysis of an energy-economy model of the residential building sector," CIRED Working Papers hal-01016399, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:202-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.