IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v129y2023ics026483772300087x.html
   My bibliography  Save this article

Uncovering the spatiotemporal impacts of built environment on traffic carbon emissions using multi-source big data

Author

Listed:
  • Wu, Jishi
  • Jia, Peng
  • Feng, Tao
  • Li, Haijiang
  • Kuang, Haibo
  • Zhang, Junyi

Abstract

Understanding and predicting urban traffic carbon emissions constitute an urgent agenda in research and policy decision-making. Since the exhausted emissions vary in time and different urban settings, assessing the spatiotemporal distribution of carbon emissions is fundamentally important for land use planning. This paper attempts to identify the spatial and temporal heterogeneity of the impacts of land use and built environment on urban traffic carbon emissions. A spatial standard deviational ellipse (SDE) model and a geographically and temporally weighted regression (GTWR) model were developed to explore the spatiotemporal dependency of traffic carbon emissions on land use and built environment factors and applied to the core urban zones of Dalian, China. Results show the center of gravity of traffic carbon emissions have a footprint characterized by a shift to the southeast first and then to the northwest, with weekday and weekend performance being consistent. Compared to other periods, emissions are spatially agglomerated during internal hours (9:00–15:59), especially during weekdays. Land use and built environment factors affect carbon emissions differently across space and time whereas the effects of residential population density, employment density, medical, road network density on weekdays are larger than that on weekends. Furthermore, we found that increasing land use mix leads to a greater negative impact on weekday emissions. This supplements the important role of mixed land use planning in decarbonization. Based on the findings, we propose various policy interventions to support the development of carbon neutral cities.

Suggested Citation

  • Wu, Jishi & Jia, Peng & Feng, Tao & Li, Haijiang & Kuang, Haibo & Zhang, Junyi, 2023. "Uncovering the spatiotemporal impacts of built environment on traffic carbon emissions using multi-source big data," Land Use Policy, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:lauspo:v:129:y:2023:i:c:s026483772300087x
    DOI: 10.1016/j.landusepol.2023.106621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026483772300087X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2023.106621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandra Setiawan, Indra & Indarto, & Deendarlianto,, 2021. "Quantitative analysis of automobile sector in Indonesian automotive roadmap for achieving national oil and CO2 emission reduction targets by 2030," Energy Policy, Elsevier, vol. 150(C).
    2. Bin Wang & Wenzhong Shi & Zelang Miao, 2015. "Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    3. Harrington, Winston & McConnell, Virginia & Cannon, Matthew, 1998. "A Behavioral Analysis of EPA's MOBILE Emission Factor Model," RFF Working Paper Series dp-98-47, Resources for the Future.
    4. Sun, Xiaoqian & Wandelt, Sebastian & Stumpf, Eike, 2018. "Competitiveness of on-demand air taxis regarding door-to-door travel time: A race through Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 1-18.
    5. Chaopeng Hong & Jennifer A. Burney & Julia Pongratz & Julia E. M. S. Nabel & Nathaniel D. Mueller & Robert B. Jackson & Steven J. Davis, 2021. "Global and regional drivers of land-use emissions in 1961–2017," Nature, Nature, vol. 589(7843), pages 554-561, January.
    6. Osorio, Carolina & Nanduri, Kanchana, 2015. "Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 520-538.
    7. Holz-Rau, Christian & Scheiner, Joachim, 2019. "Land-use and transport planning – A field of complex cause-impact relationships. Thoughts on transport growth, greenhouse gas emissions and the built environment," Transport Policy, Elsevier, vol. 74(C), pages 127-137.
    8. Gassner, Andreas & Lederer, Jakob & Kanitschar, Georg & Ossberger, Markus & Fellner, Johann, 2018. "Extended ecological footprint for different modes of urban public transport: The case of Vienna, Austria," Land Use Policy, Elsevier, vol. 72(C), pages 85-99.
    9. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    10. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Chen & Xiaogang Wu & Zhu Xiao, 2023. "Impact of Built Environment on Carbon Emissions from Cross-District Mobility: A Social Network Analysis Based on Private Vehicle Trajectory Big Data," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    2. Tanhua Jin & Kailai Wang & Yanan Xin & Jian Shi & Ye Hong & Frank Witlox, 2023. "Is A 15-minute City within Reach in the United States? An Investigation of Activity-Based Mobility Flows in the 12 Most Populous US Cities," Papers 2310.14383, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinwei Ma & Yanjie Ji & Yuchuan Jin & Jianbiao Wang & Mingjia He, 2018. "Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    2. Zihan Kan & Luliang Tang & Mei-Po Kwan & Xia Zhang, 2018. "Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data," IJERPH, MDPI, vol. 15(4), pages 1-23, March.
    3. Fei Tao & Guoan Tang & Yihao Wu & Tong Zhou, 2022. "Spatiotemporal Heterogeneity and Driving Mechanism of Co-Ordinated Urban Development: A Case Study of the Central Area of the Yangtze River Delta, China," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    4. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    5. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    6. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    7. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    8. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    9. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    10. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    11. Karimu, Amin & Brännlund, Runar, 2013. "Functional form and aggregate energy demand elasticities: A nonparametric panel approach for 17 OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 19-27.
    12. O'Driscoll, Conor & Crowley, Frank & Doran, Justin & McCarthy, Nóirín, 2022. "Retail sprawl and CO2 emissions: Retail centres in Irish cities," Journal of Transport Geography, Elsevier, vol. 102(C).
    13. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    14. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    16. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    17. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    18. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    19. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    20. Maria Sassi, 2010. "OLS and GWR Approaches to Agricultural Convergence in the EU-15," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 16(1), pages 96-108, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:129:y:2023:i:c:s026483772300087x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.