IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v75y2022ics0957178722000182.html
   My bibliography  Save this article

Toward a theory of high reliability for natural gas distribution utilities

Author

Listed:
  • Glasmeier, Amy K.
  • Williams, Darien Alexander

Abstract

High-reliability organizations facilitate the reliable accomplishment of high-risk goals while avoiding catastrophe. Our paper evaluates natural gas utilities in the United States against the features of high-reliability organization (HRO) theory. We ask: 1) How is high-reliability organizational theory applicable to natural gas infrastructure? And 2) How might natural gas hazards be reconsidered using HRO models of industrial organization? We conclude that natural gas organizations are not high reliability but might be in a period of transition toward becoming HROs. Our conclusions are cautionary, noting that the expanded use of this energy source poses substantial environmental and societal risks under present organizational circumstances.

Suggested Citation

  • Glasmeier, Amy K. & Williams, Darien Alexander, 2022. "Toward a theory of high reliability for natural gas distribution utilities," Utilities Policy, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:juipol:v:75:y:2022:i:c:s0957178722000182
    DOI: 10.1016/j.jup.2022.101353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178722000182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2022.101353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. A. Grant Wilson & Iain Staffell, 2018. "Rapid fuel switching from coal to natural gas through effective carbon pricing," Nature Energy, Nature, vol. 3(5), pages 365-372, May.
    2. Chuanyi Ji & Yun Wei & Henry Mei & Jorge Calzada & Matthew Carey & Steve Church & Timothy Hayes & Brian Nugent & Gregory Stella & Matthew Wallace & Joe White & Robert Wilcox, 2016. "Large-scale data analysis of power grid resilience across multiple US service regions," Nature Energy, Nature, vol. 1(5), pages 1-8, May.
    3. Karlene H. Roberts, 1990. "Some Characteristics of One Type of High Reliability Organization," Organization Science, INFORMS, vol. 1(2), pages 160-176, May.
    4. Lewis C. King & Jeroen C. J. M. van den Bergh, 2018. "Implications of net energy-return-on-investment for a low-carbon energy transition," Nature Energy, Nature, vol. 3(4), pages 334-340, April.
    5. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2018. "Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia," Energy Policy, Elsevier, vol. 120(C), pages 635-643.
    6. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    2. Stojčić, Nebojša, 2021. "Social and private outcomes of green innovation incentives in European advancing economies," Technovation, Elsevier, vol. 104(C).
    3. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    4. Andr, Francisco J. & Gonzlez, Paula & Porteiro, Nicols, 2009. "Strategic quality competition and the Porter Hypothesis," Journal of Environmental Economics and Management, Elsevier, vol. 57(2), pages 182-194, March.
    5. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    6. Li, Weiping & Chen, Xiaoqi & Huang, Jiashun & Gong, Xu & Wu, Wei, 2022. "Do environmental regulations affect firm's cash holdings? Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 112(C).
    7. Gani, Azmat & Scrimgeour, Frank, 2014. "Modeling governance and water pollution using the institutional ecological economic framework," Economic Modelling, Elsevier, vol. 42(C), pages 363-372.
    8. He, Zhenyu & Tang, Yuwei, 2023. "Local environmental constraints and firms’ export product quality: Evidence from China," Economic Modelling, Elsevier, vol. 124(C).
    9. DeCanio, Stephen J. & Watkins, William E., 1998. "Information processing and organizational structure," Journal of Economic Behavior & Organization, Elsevier, vol. 36(3), pages 275-294, August.
    10. Chen, Chunhua & Jiang, Dequan & Lan, Meng & Li, Weiping & Ye, Ling, 2022. "Does environmental regulation affect labor investment Efficiency?Evidence from a quasi-natural experiment in China," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 82-95.
    11. Liu, Jingjing & Zhao, Min & Wang, Yanbo, 2020. "Impacts of government subsidies and environmental regulations on green process innovation: A nonlinear approach," Technology in Society, Elsevier, vol. 63(C).
    12. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    13. Hazhir Rahmandad & Nelson Repenning, 2016. "Capability erosion dynamics," Strategic Management Journal, Wiley Blackwell, vol. 37(4), pages 649-672, April.
    14. Dominique Bianco & Evens Salies, 2017. "The Strong Porter Hypothesis in an Endogenous Growth Model with Satisficing Managers," Economics Bulletin, AccessEcon, vol. 37(4), pages 2641-2654.
    15. Zhang, Dongyang, 2023. "Does green finance really inhibit extreme hypocritical ESG risk? A greenwashing perspective exploration," Energy Economics, Elsevier, vol. 121(C).
    16. Ghisetti, Claudia, 2017. "Demand-pull and environmental innovations: Estimating the effects of innovative public procurement," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 178-187.
    17. Löschel, Andreas & Lutz, Benjamin Johannes & Managi, Shunsuke, 2019. "The impacts of the EU ETS on efficiency and economic performance – An empirical analyses for German manufacturing firms," Resource and Energy Economics, Elsevier, vol. 56(C), pages 71-95.
    18. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    20. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).

    More about this item

    Keywords

    Energy; Natural gas; Disaster;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:75:y:2022:i:c:s0957178722000182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.