IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v74y2019icp134-144.html
   My bibliography  Save this article

Residential dissonance and walking for transport

Author

Listed:
  • Kajosaari, Anna
  • Hasanzadeh, Kamyar
  • Kyttä, Marketta

Abstract

The concept of residential dissonance contextualizes the combined impact of built environment and individual travel and land-use preferences on travel behavior. A limited number of studies have explored the effect of residential dissonance specifically on walking. However, evidence from the active travel literature suggests that the environmental characteristics associated with diverse active travel modes differ to some extent. This study addresses residential dissonance in a framework specific for walking outcomes, as the applied neighborhood boundaries, residential preferences and the observed built environment were operationalized with measures related to walking for transport. SoftGIS, a public participatory GIS method allowing the mapping of frequently visited destinations was used to survey the daily walking behavior of 772 respondents aged 25–40 years living in the Helsinki metropolitan area, Finland. Ordinal logistic regression analyses were used to assess the adjusted odds of walking a high share of estimated monthly trips and travel distance. The identified residential dissonance groups were found to have significant associations with the walking outcomes. Associations between the observed neighborhood walkability and the walking outcomes varied by trip purpose, being more consistent with walking to utilitarian than to recreational destinations. Overall, the results support views on the interconnectedness of individual attitudes and the built environment in facilitating walking for transport.

Suggested Citation

  • Kajosaari, Anna & Hasanzadeh, Kamyar & Kyttä, Marketta, 2019. "Residential dissonance and walking for transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 134-144.
  • Handle: RePEc:eee:jotrge:v:74:y:2019:i:c:p:134-144
    DOI: 10.1016/j.jtrangeo.2018.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318304885
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maarten van Ham & Peteke Feijten, 2008. "Who Wants to Leave the Neighbourhood? The Effect of Being Different from the Neighbourhood Population on Wishes to Move," Environment and Planning A, , vol. 40(5), pages 1151-1170, May.
    2. Czepkiewicz, Michał & Ottelin, Juudit & Ala-Mantila, Sanna & Heinonen, Jukka & Hasanzadeh, Kamyar & Kyttä, Marketta, 2018. "Urban structural and socioeconomic effects on local, national and international travel patterns and greenhouse gas emissions of young adults," Journal of Transport Geography, Elsevier, vol. 68(C), pages 130-141.
    3. De Vos, Jonas & Derudder, Ben & Van Acker, Veronique & Witlox, Frank, 2012. "Reducing car use: changing attitudes or relocating? The influence of residential dissonance on travel behavior," Journal of Transport Geography, Elsevier, vol. 22(C), pages 1-9.
    4. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    5. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What if You Live in the Wrong Neighborhood? The Impact of Residential Neighborhood Type Dissonance on Distance Traveled," University of California Transportation Center, Working Papers qt5hh713d6, University of California Transportation Center.
    6. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    7. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    8. Giles-Corti, Billie & Bull, Fiona & Knuiman, Matthew & McCormack, Gavin & Van Niel, Kimberly & Timperio, Anna & Christian, Hayley & Foster, Sarah & Divitini, Mark & Middleton, Nick & Boruff, Bryan, 2013. "The influence of urban design on neighbourhood walking following residential relocation: Longitudinal results from the RESIDE study," Social Science & Medicine, Elsevier, vol. 77(C), pages 20-30.
    9. Brian Lee & Paul Waddell, 2010. "Residential mobility and location choice: a nested logit model with sampling of alternatives," Transportation, Springer, vol. 37(4), pages 587-601, July.
    10. Wang, Donggen & Cao, Xinyu, 2017. "Impacts of the built environment on activity-travel behavior: Are there differences between public and private housing residents in Hong Kong?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 25-35.
    11. Cho, Gi-Hyoug & Rodríguez, Daniel A., 2014. "The influence of residential dissonance on physical activity and walking: evidence from the Montgomery County, MD, and Twin Cities, MN, areas," Journal of Transport Geography, Elsevier, vol. 41(C), pages 259-267.
    12. Tim Schwanen & Patricia L Mokhtarian, 2004. "The Extent and Determinants of Dissonance between Actual and Preferred Residential Neighborhood Type," Environment and Planning B, , vol. 31(5), pages 759-784, October.
    13. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    14. Fatmi, Mahmudur Rahman & Chowdhury, Subeh & Habib, Muhammad Ahsanul, 2017. "Life history-oriented residential location choice model: A stress-based two-tier panel modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 293-307.
    15. Wolday, Fitwi & Cao, Jason & Næss, Petter, 2018. "Examining factors that keep residents with high transit preference away from transit-rich zones and associated behavior outcomes," Journal of Transport Geography, Elsevier, vol. 66(C), pages 224-234.
    16. Gerlinde Grasser & Delfien Dyck & Sylvia Titze & Willibald Stronegger, 2013. "Objectively measured walkability and active transport and weight-related outcomes in adults: a systematic review," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(4), pages 615-625, August.
    17. Badland, Hannah M. & Oliver, Melody & Kearns, Robin A. & Mavoa, Suzanne & Witten, Karen & Duncan, Mitch J. & Batty, G. David, 2012. "Association of neighbourhood residence and preferences with the built environment, work-related travel behaviours, and health implications for employed adults: Findings from the URBAN study," Social Science & Medicine, Elsevier, vol. 75(8), pages 1469-1476.
    18. Jae Hong Kim & Francesca Pagliara & John Preston, 2005. "The Intention to Move and Residential Location Choice Behaviour," Urban Studies, Urban Studies Journal Limited, vol. 42(9), pages 1621-1636, August.
    19. Frank, Lawrence Douglas & Saelens, Brian E. & Powell, Ken E. & Chapman, James E., 2007. "Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity?," Social Science & Medicine, Elsevier, vol. 65(9), pages 1898-1914, November.
    20. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    21. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    22. Cao, Xinyu (Jason), 2015. "Heterogeneous effects of neighborhood type on commute mode choice: An exploration of residential dissonance in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 48(C), pages 188-196.
    23. De Vos, Jonas & Ettema, Dick & Witlox, Frank, 2018. "Changing travel behaviour and attitudes following a residential relocation," Journal of Transport Geography, Elsevier, vol. 73(C), pages 131-147.
    24. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    25. Esther Havekes & Michael Bader & Maria Krysan, 2016. "Realizing Racial and Ethnic Neighborhood Preferences? Exploring the Mismatches Between What People Want, Where They Search, and Where They Live," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 35(1), pages 101-126, February.
    26. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What Affects Commute Mode Choice: Neighborhood Physical Structure or Preferences Toward Neighborhoods?," University of California Transportation Center, Working Papers qt4nq9r1c9, University of California Transportation Center.
    27. Felix Haifeng Liao & Steven Farber & Reid Ewing, 2015. "Compact development and preference heterogeneity in residential location choice behaviour: A latent class analysis," Urban Studies, Urban Studies Journal Limited, vol. 52(2), pages 314-337, February.
    28. Kamyar Hasanzadeh & Tiina Laatikainen & Marketta Kyttä, 2018. "A place-based model of local activity spaces: individual place exposure and characteristics," Journal of Geographical Systems, Springer, vol. 20(3), pages 227-252, July.
    29. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pot, Felix Johan & Koster, Sierdjan & Tillema, Taede, 2023. "Perceived accessibility and residential self-selection in the Netherlands," Journal of Transport Geography, Elsevier, vol. 108(C).
    2. Li, Jingjing & Auchincloss, Amy H. & Yang, Yong & Rodriguez, Daniel A. & Sánchez, Brisa N., 2020. "Neighborhood characteristics and transport walking: Exploring multiple pathways of influence using a structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    3. Samira Ramezani & Tiina Laatikainen & Kamyar Hasanzadeh & Marketta Kyttä, 2021. "Shopping trip mode choice of older adults: an application of activity space and hybrid choice models in understanding the effects of built environment and personal goals," Transportation, Springer, vol. 48(2), pages 505-536, April.
    4. Kamruzzaman, Md. & Giles-Corti, Billie & De Vos, Jonas & Witlox, Frank & Shatu, Farjana & Turrell, Gavin, 2021. "The life and death of residential dissonants in transit-oriented development: A discrete time survival analysis," Journal of Transport Geography, Elsevier, vol. 90(C).
    5. De Vos, Jonas & Singleton, Patrick A., 2020. "Travel and cognitive dissonance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 525-536.
    6. De Vos, Jonas & Mouratidis, Kostas & Cheng, Long & Kamruzzaman, Md., 2021. "Does a residential relocation enable satisfying travel?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 188-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Vos, Jonas & Singleton, Patrick A., 2020. "Travel and cognitive dissonance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 525-536.
    2. Kamruzzaman, Md. & Giles-Corti, Billie & De Vos, Jonas & Witlox, Frank & Shatu, Farjana & Turrell, Gavin, 2021. "The life and death of residential dissonants in transit-oriented development: A discrete time survival analysis," Journal of Transport Geography, Elsevier, vol. 90(C).
    3. De Vos, Jonas & Mouratidis, Kostas & Cheng, Long & Kamruzzaman, Md., 2021. "Does a residential relocation enable satisfying travel?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 188-201.
    4. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    5. van Wee, Bert & De Vos, Jonas & Maat, Kees, 2019. "Impacts of the built environment and travel behaviour on attitudes: Theories underpinning the reverse causality hypothesis," Journal of Transport Geography, Elsevier, vol. 80(C).
    6. De Vos, Jonas & Ettema, Dick & Witlox, Frank, 2018. "Changing travel behaviour and attitudes following a residential relocation," Journal of Transport Geography, Elsevier, vol. 73(C), pages 131-147.
    7. Li, Jianling, 2018. "Residential and transit decisions: Insights from focus groups of neighborhoods around transit stations," Transport Policy, Elsevier, vol. 63(C), pages 1-9.
    8. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    9. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.
    10. Xue, Fei & Yao, Enjian & Jin, Fanglei, 2020. "Exploring residential relocation behavior for families with workers and students; a study from Beijing, China," Journal of Transport Geography, Elsevier, vol. 89(C).
    11. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    12. Wolday, Fitwi & Cao, Jason & Næss, Petter, 2018. "Examining factors that keep residents with high transit preference away from transit-rich zones and associated behavior outcomes," Journal of Transport Geography, Elsevier, vol. 66(C), pages 224-234.
    13. Rahman, Mashrur & Sciara, Gian-Claudia, 2022. "Travel attitudes, the built environment and travel behavior relationships: Causal insights from social psychology theories," Transport Policy, Elsevier, vol. 123(C), pages 44-54.
    14. Li, Jingjing & Auchincloss, Amy H. & Yang, Yong & Rodriguez, Daniel A. & Sánchez, Brisa N., 2020. "Neighborhood characteristics and transport walking: Exploring multiple pathways of influence using a structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. De Vos, Jonas & Cheng, Long & Kamruzzaman, Md. & Witlox, Frank, 2021. "The indirect effect of the built environment on travel mode choice: A focus on recent movers," Journal of Transport Geography, Elsevier, vol. 91(C).
    16. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    17. Janke, Julia, 2021. "Re-visiting residential self-selection and dissonance: Does intra-household decision-making change the results?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 379-401.
    18. Cao, Xinyu (Jason), 2015. "Heterogeneous effects of neighborhood type on commute mode choice: An exploration of residential dissonance in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 48(C), pages 188-196.
    19. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    20. Huang, Xiaoyan & Cao, Xinyu (Jason) & Cao, Xiaoshu & Yin, Jiangbin, 2016. "How does the propensity of living near rail transit moderate the influence of rail transit on transit trip frequency in Xi'an?," Journal of Transport Geography, Elsevier, vol. 54(C), pages 194-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:74:y:2019:i:c:p:134-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.