IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v19y2011i2p285-293.html
   My bibliography  Save this article

Street centrality and land use intensity in Baton Rouge, Louisiana

Author

Listed:
  • Wang, Fahui
  • Antipova, Anzhelika
  • Porta, Sergio

Abstract

This paper examines the relationship between street centrality and land use intensity in Baton Rouge, Louisiana. Street centrality is calibrated in terms of a node’s closeness, betweenness and straightness on the road network. Land use intensity is measured by population (residential) and employment (business) densities in census tracts, respectively and combined. Two GIS-based methods are used to transform data sets of centrality (at network nodes) and densities (in census tracts) to one unit for correlation analysis. The kernel density estimation (KDE) converts both measures to raster pixels, and the floating catchment area (FCA) method computes average centrality values around census tracts. Results indicate that population and employment densities are highly correlated with street centrality values. Among the three centrality indices, closeness exhibits the highest correlation with land use densities, straightness the next and betweenness the last. This confirms that street centrality captures location advantage in a city and plays a crucial role in shaping the intraurban variation of land use intensity.

Suggested Citation

  • Wang, Fahui & Antipova, Anzhelika & Porta, Sergio, 2011. "Street centrality and land use intensity in Baton Rouge, Louisiana," Journal of Transport Geography, Elsevier, vol. 19(2), pages 285-293.
  • Handle: RePEc:eee:jotrge:v:19:y:2011:i:2:p:285-293
    DOI: 10.1016/j.jtrangeo.2010.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692310000062
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2010.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Fahui & Guldmann, Jean-Michel, 1996. "Simulating urban population density with a gravity-based model," Socio-Economic Planning Sciences, Elsevier, vol. 30(4), pages 245-256, December.
    2. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    3. E Heikkila & P Gordon & J I Kim & R B Peiser & H W Richardson & D Dale-Johnson, 1989. "What Happened to the CBD-Distance Gradient?: Land Values in a Policentric City," Environment and Planning A, , vol. 21(2), pages 221-232, February.
    4. Xin-Jian Xu & Zhi-Xi Wu & Ying-Hai Wang, 2006. "Properties Of Weighted Complex Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 521-529.
    5. Ladd, Helen F. & Wheaton, William, 1991. "Causes and consequences of the changing urban form : Introduction," Regional Science and Urban Economics, Elsevier, vol. 21(2), pages 157-162, July.
    6. Sergio Porta & Emanuele Strano & Valentino Iacoviello & Roberto Messora & Vito Latora & Alessio Cardillo & Fahui Wang & Salvatore Scellato, 2009. "Street Centrality and Densities of Retail and Services in Bologna, Italy," Environment and Planning B, , vol. 36(3), pages 450-465, June.
    7. Daniel Immergluck, 1998. "Job Proximity and the Urban Employment Problem: Do Suitable Nearby Jobs Improve Neighbourhood Employment Rates?," Urban Studies, Urban Studies Journal Limited, vol. 35(1), pages 7-23, January.
    8. Cao, Ricardo & Cuevas, Antonio & Gonzalez Manteiga, Wensceslao, 1994. "A comparative study of several smoothing methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 153-176, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Yue & Xinyan Zhu, 2019. "Exploring the Relationship between Urban Vitality and Street Centrality Based on Social Network Review Data in Wuhan, China," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    2. Guanwen Yin & Tianzi Liu & Yanbin Chen & Yiming Hou, 2022. "Disparity and Spatial Heterogeneity of the Correlation between Street Centrality and Land Use Intensity in Jinan, China," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    3. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    4. Wang, Xuesong & You, Shikai & Wang, Ling, 2017. "Classifying road network patterns using multinomial logit model," Journal of Transport Geography, Elsevier, vol. 58(C), pages 104-112.
    5. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & Li, Rong & Wu, Jianjun, 2017. "Heuristic urban transportation network design method, a multilayer coevolution approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 71-83.
    6. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    7. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    8. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    9. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    10. Yang, Chao & Chen, Zhuoran & Qian, Jianghai & Han, Dingding & Zhao, Kaidi, 2023. "Simultaneous improvement of multiple transportation performances on link-coupled networks by global dynamic routing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    11. Barbeito, Inés & Cao, Ricardo, 2016. "Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 130-147.
    12. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    13. McMillen, Daniel P. & Smith, Stefani C., 2003. "The number of subcenters in large urban areas," Journal of Urban Economics, Elsevier, vol. 53(3), pages 321-338, May.
    14. McMillen, Daniel P., 2001. "Nonparametric Employment Subcenter Identification," Journal of Urban Economics, Elsevier, vol. 50(3), pages 448-473, November.
    15. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    16. Xiaokun Su & Chenrouyu Zheng & Yefei Yang & Yafei Yang & Wen Zhao & Yue Yu, 2022. "Spatial Structure and Development Patterns of Urban Traffic Flow Network in Less Developed Areas: A Sustainable Development Perspective," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    17. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    18. Scoppa, Martin & Bawazir, Khawla & Alawadi, Khaled, 2019. "Straddling boundaries in superblock cities. Assessing local and global network connectivity using cases from Abu Dhabi, UAE," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 770-782.
    19. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    20. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:19:y:2011:i:2:p:285-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.