IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v87y2019icp57-70.html
   My bibliography  Save this article

Reliable estimation of suppliers’ total cost of ownership: An imprecise data envelopment analysis model with common weights

Author

Listed:
  • Shabani, Amir
  • Visani, Franco
  • Barbieri, Paolo
  • Dullaert, Wout
  • Vigo, Daniele

Abstract

Total cost of ownership (TCO) is a management accounting technique that evaluates the total cost of a business partnership using a time-consuming activity-based costing procedure. Studies have suggested that TCO-based data envelopment analysis (DEA) can effectively estimate the results of TCO with substantially less effort and time; however, its adoption in practice is limited due to certain shortcomings. First, managers struggle to understand and accept the uncommon weighting schemes of existing TCO-based DEA models because traditional TCO analyses require a common set of weights. Second, both the traditional TCO approach and TCO-based DEA models are designed to handle precise data, whereas TCO analyses often involve imprecise data from conflicting data sources and estimations.

Suggested Citation

  • Shabani, Amir & Visani, Franco & Barbieri, Paolo & Dullaert, Wout & Vigo, Daniele, 2019. "Reliable estimation of suppliers’ total cost of ownership: An imprecise data envelopment analysis model with common weights," Omega, Elsevier, vol. 87(C), pages 57-70.
  • Handle: RePEc:eee:jomega:v:87:y:2019:i:c:p:57-70
    DOI: 10.1016/j.omega.2018.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318304390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George E Halkos & Nickolaos G Tzeremes & Stavros A Kourtzidis, 2015. "Weight assurance region in two-stage additive efficiency decomposition DEA model: an application to school data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 696-704, April.
    2. Dimitris Kostamis & Damian R. Beil & Izak Duenyas, 2009. "Total-Cost Procurement Auctions: Impact of Suppliers' Cost Adjustments on Auction Format Choice," Management Science, INFORMS, vol. 55(12), pages 1985-1999, December.
    3. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    4. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    5. Jolly Puri & Shiv Prasad Yadav & Harish Garg, 2017. "A new multi-component DEA approach using common set of weights methodology and imprecise data: an application to public sector banks in India with undesirable and shared resources," Annals of Operations Research, Springer, vol. 259(1), pages 351-388, December.
    6. Chen, Haoxun, 2018. "Average lexicographic efficiency for data envelopment analysis," Omega, Elsevier, vol. 74(C), pages 82-91.
    7. Kao, Chiang, 2010. "Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization," Omega, Elsevier, vol. 38(6), pages 484-491, December.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. A. Davoodi & H. Rezai, 2012. "Common set of weights in data envelopment analysis: a linear programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 355-365, June.
    10. Koen Decancq & María Ana Lugo, 2013. "Weights in Multidimensional Indices of Wellbeing: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 32(1), pages 7-34, January.
    11. Joe Zhu, 2004. "Imprecise DEA via Standard Linear DEA Models with a Revisit to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 52(2), pages 323-329, April.
    12. Zhu, Joe, 2003. "Efficiency evaluation with strong ordinal input and output measures," European Journal of Operational Research, Elsevier, vol. 146(3), pages 477-485, May.
    13. Zhu, Joe, 2003. "Imprecise data envelopment analysis (IDEA): A review and improvement with an application," European Journal of Operational Research, Elsevier, vol. 144(3), pages 513-529, February.
    14. William W. Cooper & Kyung Sam Park & Gang Yu, 2001. "An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 49(6), pages 807-820, December.
    15. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2018. "Dual-role factors for imprecise data envelopment analysis," Omega, Elsevier, vol. 77(C), pages 15-31.
    16. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    17. Kurtuluş Barış Öner & Alan Scheller-Wolf & Geert-Jan van Houtum, 2013. "Redundancy Optimization for Critical Components in High-Availability Technical Systems," Operations Research, INFORMS, vol. 61(1), pages 244-264, February.
    18. K S Park, 2007. "Efficiency bounds and efficiency classifications in DEA with imprecise data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 533-540, April.
    19. Dimitrov, Stanko & Sutton, Warren, 2013. "Generalized symmetric weight assignment technique: Incorporating managerial preferences in data envelopment analysis using a penalty function," Omega, Elsevier, vol. 41(1), pages 48-54.
    20. Reza Farzipoor Saen, 2009. "A decision model for ranking suppliers in the presence of cardinal and ordinal data, weight restrictions, and nondiscretionary factors," Annals of Operations Research, Springer, vol. 172(1), pages 177-192, November.
    21. Visani, Franco & Barbieri, Paolo & Di Lascio, F. Marta L. & Raffoni, Anna & Vigo, Daniele, 2016. "Supplier’s total cost of ownership evaluation: a data envelopment analysis approach," Omega, Elsevier, vol. 61(C), pages 141-154.
    22. Sadjadi, S.J. & Omrani, H., 2010. "A bootstrapped robust data envelopment analysis model for efficiency estimating of telecommunication companies in Iran," Telecommunications Policy, Elsevier, vol. 34(4), pages 221-232, May.
    23. Teresa Wu & Dan Shunk & Jennifer Blackhurst & Rajendra Appalla, 2007. "AIDEA: a methodology for supplier evaluation and selection in a supplier-based manufacturing environment," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 11(2), pages 174-192.
    24. Saccani, Nicola & Perona, Marco & Bacchetti, Andrea, 2017. "The total cost of ownership of durable consumer goods: A conceptual model and an empirical application," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 1-13.
    25. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    26. Entani, Tomoe & Maeda, Yutaka & Tanaka, Hideo, 2002. "Dual models of interval DEA and its extension to interval data," European Journal of Operational Research, Elsevier, vol. 136(1), pages 32-45, January.
    27. Franco Visani & Riccardo Silvi & Klaus Möller, 2012. "Efficiency Measurement for Supplier Selection and Control: A Data Envelopment Analysis Approach," Palgrave Macmillan Books, in: Greg N. Gregoriou & Nigel Finch (ed.), Best Practices in Management Accounting, chapter 9, pages 133-145, Palgrave Macmillan.
    28. HATAMI-MARBINI, Adel & GHELEJ BEIGI, Z. & FUKUYAMA, H. & GHOLAMI, K., 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," LIDAM Reprints CORE 2722, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    29. Sadjadi, S.J. & Omrani, H., 2008. "Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies," Energy Policy, Elsevier, vol. 36(11), pages 4247-4254, November.
    30. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    31. SAATI, Saber & HATAMI-MARBINI, Adel & AGRELL, Per J. & TAVANA, Madjid, 2012. "A common set of weight approach using an ideal decision making unit in data envelopment analysis," LIDAM Reprints CORE 2406, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    32. Ruiz, José L. & Sirvent, Inmaculada, 2016. "Common benchmarking and ranking of units with DEA," Omega, Elsevier, vol. 65(C), pages 1-9.
    33. Jie Wu & Junfei Chu & Qingyuan Zhu & Yongjun Li & Liang Liang, 2016. "Determining common weights in data envelopment analysis based on the satisfaction degree," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1446-1458, December.
    34. SHOKOUHI, Amir H. & HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber, 2010. "A robust optimization approach for imprecise data envelopment analysis," LIDAM Reprints CORE 2215, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Visani, Franco & Boccali, Filippo, 2020. "Purchasing price assessment of leverage items: A Data Envelopment Analysis approach," International Journal of Production Economics, Elsevier, vol. 223(C).
    2. Mauro Lizot & Flavio Trojan & Paulo Afonso, 2021. "Combining Total Cost of Ownership and Multi-Criteria Decision Analysis to Improve Cost Management in Family Farming," Agriculture, MDPI, vol. 11(2), pages 1-20, February.
    3. Sylvie Crouzet, 2022. "Train your buyers in the hidden cost method! For a purchasing cost that incorporates evaluation of the impact of purchasing-related dysfunctions [Formez vos acheteurs à la méthode des coûts-perform," Post-Print hal-04223281, HAL.
    4. Vladimír Holý, 2022. "The impact of operating environment on efficiency of public libraries," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 395-414, March.
    5. Dariush Akbarian, 2020. "Overall profit Malmquist productivity index under data uncertainty," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    2. HATAMI-MARBINI, Adel & AGRELL, Per & AGHAYI, Nazila, 2013. "Imprecise data envelopment analysis for the two-stage process," LIDAM Discussion Papers CORE 2013004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Mehdi Toloo & Esmaeil Keshavarz & Adel Hatami-Marbini, 2021. "An interval efficiency analysis with dual-role factors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 255-287, March.
    4. Park, K. Sam, 2010. "Duality, efficiency computations and interpretations in imprecise DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 289-296, January.
    5. Yu Yu & Weiwei Zhu & Qian Zhang, 2019. "DEA cross-efficiency evaluation and ranking method based on interval data," Annals of Operations Research, Springer, vol. 278(1), pages 159-175, July.
    6. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    7. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    8. Anna Labijak-Kowalska & Miłosz Kadziński, 2023. "Exact and stochastic methods for robustness analysis in the context of Imprecise Data Envelopment Analysis," Operational Research, Springer, vol. 23(1), pages 1-34, March.
    9. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.
    10. Azadi, Majid & Farzipoor Saen, Reza, 2013. "A combination of QFD and imprecise DEA with enhanced Russell graph measure: A case study in healthcare," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 281-291.
    11. Emmanuel Kwasi Mensah, 2020. "Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 491-518, December.
    12. Kao, Chiang & Lin, Pei-Huang, 2011. "Qualitative factors in data envelopment analysis: A fuzzy number approach," European Journal of Operational Research, Elsevier, vol. 211(3), pages 586-593, June.
    13. H-T Lin, 2011. "Efficiency analysis of chain stores: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1268-1281, July.
    14. Mostafaee, A. & Saljooghi, F.H., 2010. "Cost efficiency measures in data envelopment analysis with data uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 595-603, April.
    15. Reza Farzipoor Saen, 2009. "A decision model for ranking suppliers in the presence of cardinal and ordinal data, weight restrictions, and nondiscretionary factors," Annals of Operations Research, Springer, vol. 172(1), pages 177-192, November.
    16. Bohlool Ebrahimi & Madjid Tavana & Andreas Kleine & Andreas Dellnitz, 2021. "An epsilon-based data envelopment analysis approach for solving performance measurement problems with interval and ordinal dual-role factors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1103-1124, December.
    17. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    18. Najmeh Malekmohammadi & Farhad Lotfi & Azmi Jaafar, 2011. "Data envelopment scenario analysis with imprecise data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(1), pages 65-79, March.
    19. Jolly Puri & Shiv Prasad Yadav, 2017. "Improved DEA models in the presence of undesirable outputs and imprecise data: an application to banking industry in India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1608-1629, November.
    20. Nazila Aghayi & Madjid Tavana & Mohammad Ali Raayatpanah, 2016. "Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(3), pages 385-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:87:y:2019:i:c:p:57-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.