IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v34y2006i3p274-282.html
   My bibliography  Save this article

Effects of maintenance policies on the productivity of flexible manufacturing cells

Author

Listed:
  • Savsar, Mehmet

Abstract

Flexible manufacturing cells (FMCs) often operate with increasing failure rate due to extensive utilization and wear-outs of equipment. While maintenance plans can eliminate wear-out failures, random failures are still unavoidable. This paper discusses a procedure that combines simulation and analytical models to analyze the effects of corrective, preventive, and opportunistic maintenance policies on productivity of a flexible manufacturing cell. The production output rate of an FMC, which is a function of availability, is determined under different maintenance policies and mean time between failures.

Suggested Citation

  • Savsar, Mehmet, 2006. "Effects of maintenance policies on the productivity of flexible manufacturing cells," Omega, Elsevier, vol. 34(3), pages 274-282, June.
  • Handle: RePEc:eee:jomega:v:34:y:2006:i:3:p:274-282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00161-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waeyenbergh, Geert & Pintelon, Liliane, 2004. "Maintenance concept development: A case study," International Journal of Production Economics, Elsevier, vol. 89(3), pages 395-405, June.
    2. Komonen, Kari, 2002. "A cost model of industrial maintenance for profitability analysis and benchmarking," International Journal of Production Economics, Elsevier, vol. 79(1), pages 15-31, September.
    3. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gharbi, A. & Kenne, J.-P. & Beit, M., 2007. "Optimal safety stocks and preventive maintenance periods in unreliable manufacturing systems," International Journal of Production Economics, Elsevier, vol. 107(2), pages 422-434, June.
    2. T F Lipi & J-H Lim & M J Zuo & W Wang, 2012. "A condition- and age-based replacement model using delay time modelling," Journal of Risk and Reliability, , vol. 226(2), pages 221-233, April.
    3. Muchiri, Peter & Pintelon, Liliane & Gelders, Ludo & Martin, Harry, 2011. "Development of maintenance function performance measurement framework and indicators," International Journal of Production Economics, Elsevier, vol. 131(1), pages 295-302, May.
    4. Berthaut, F. & Gharbi, A. & Dhouib, K., 2011. "Joint modified block replacement and production/inventory control policy for a failure-prone manufacturing cell," Omega, Elsevier, vol. 39(6), pages 642-654, December.
    5. Wu, Chin-Chun & Chou, Chao-Yu & Huang, Chikong, 2009. "Optimal price, warranty length and production rate for free replacement policy in the static demand market," Omega, Elsevier, vol. 37(1), pages 29-39, February.
    6. Arda Yenipazarli, 2015. "A road map to new product success: warranty, advertisement and price," Annals of Operations Research, Springer, vol. 226(1), pages 669-694, March.
    7. Fawaz Abdulmalek & Mehmet Savsar & Majid M. Aldaihani, 2012. "Design of experiments for the analysis of the effects of pallet arrival patterns and maintenance policies on FMC productivity," International Journal of Applied Management Science, Inderscience Enterprises Ltd, vol. 4(1), pages 91-106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fawaz Abdulmalek & Mehmet Savsar & Majid M. Aldaihani, 2012. "Design of experiments for the analysis of the effects of pallet arrival patterns and maintenance policies on FMC productivity," International Journal of Applied Management Science, Inderscience Enterprises Ltd, vol. 4(1), pages 91-106.
    2. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Crespo Marquez, Adolfo & Gupta, Jatinder N.D., 2006. "Contemporary maintenance management: process, framework and supporting pillars," Omega, Elsevier, vol. 34(3), pages 313-326, June.
    4. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    5. Coria, V.H. & Maximov, S. & Rivas-Dávalos, F. & Melchor, C.L. & Guardado, J.L., 2015. "Analytical method for optimization of maintenance policy based on available system failure data," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 55-63.
    6. Bruns, Peter, 2002. "Optimal maintenance strategies for systems with partial repair options and without assuming bounded costs," European Journal of Operational Research, Elsevier, vol. 139(1), pages 146-165, May.
    7. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    8. Vineyard, Michael & Amoako-Gyampah, Kwasi & Meredith, Jack R., 1999. "Failure rate distributions for flexible manufacturing systems: An empirical study," European Journal of Operational Research, Elsevier, vol. 116(1), pages 139-155, July.
    9. de Brito, Marisa P. & Dekker, Rommert, 2003. "Modelling product returns in inventory control--exploring the validity of general assumptions," International Journal of Production Economics, Elsevier, vol. 81(1), pages 225-241, January.
    10. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    11. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Thomas Bittar & Pierre Carpentier & Jean-Philippe Chancelier & Jérôme Lonchampt, 2022. "A decomposition method by interaction prediction for the optimization of maintenance scheduling," Annals of Operations Research, Springer, vol. 316(1), pages 229-267, September.
    13. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    14. Salari, Nooshin & Makis, Viliam, 2017. "Comparison of two maintenance policies for a multi-unit system considering production and demand rates," International Journal of Production Economics, Elsevier, vol. 193(C), pages 381-391.
    15. Pinjala, Srinivas Kumar & Pintelon, Liliane & Vereecke, Ann, 2006. "An empirical investigation on the relationship between business and maintenance strategies," International Journal of Production Economics, Elsevier, vol. 104(1), pages 214-229, November.
    16. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    17. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    18. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    19. Hoskins, R. P. & Brint, A. T. & Strbac, G., 1999. "A structured approach to Asset Management within the electricity industry," Utilities Policy, Elsevier, vol. 7(4), pages 221-232, February.
    20. Haque, Lani & Armstrong, Michael J., 2007. "A survey of the machine interference problem," European Journal of Operational Research, Elsevier, vol. 179(2), pages 469-482, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:34:y:2006:i:3:p:274-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.